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ABSTRACT

Process intensification has revolutionized chemical process design by integrating reaction and separation,
enhancing efficiency, reducing energy consumption, and promoting sustainability. However, these advance-
ments introduce significant control challenges due to increased process complexity, nonlinear interactions, and
dynamic constraints. Over the past 25 years, conventional control strategies have been progressively replaced by
predictive, adaptive, and data-driven methods, which are better suited for managing multivariable interactions
and real-time optimization. The widespread adoption of predictive control frameworks has improved stability,
reduced response times, and enhanced energy efficiency in reactive and extractive distillation, dividing-wall
columns, and hybrid separation processes. Furthermore, integrating intelligent decision-making tools has
enabled real-time adaptability, ensuring robust performance under fluctuating operating conditions. The
emergence of hybrid control strategies, which combine predictive models with data-driven learning techniques,
has further enhanced the ability to address nonlinearities and process uncertainties. This shift underscores a
transition toward more intelligent and sustainable process operations, where control systems not only optimize
efficiency but also minimize emissions and improve resource utilization. As process intensification continues to
advance, future research should focus on scalable, autonomous, and computationally efficient control solutions
to ensure operational reliability and economic feasibility in sustainable chemical manufacturing.

Nomenclature

Al artificial intelligence

ANN artificial neural networks
ARMA  autoregressive moving average
ATJ alcohol-to-jet

BTX benzene-toluene-xylene

CN condition number

CSTR continuous stirred-tank reactor
DAE differential-algebraic equation
DES deep eutectic solvents

DMC dimethyl carbonate

DMCo  dynamic matrix control

EDWCs extractive dividing-wall columns
EG ethylene glycol

EMPC economic model predictive control
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GOBF generalized orthonormal basis filter
HIDIiC  heat-integrated distillation columns
IAE absolute error

ICS intelligent control system

LCA life cycle assessment

DWC dividing wall column

MEC micro-engineered catalyst

MIDO  mixed-integer dynamic optimization
MINLP  mixed-integer nonlinear programming

mp-MPC multi-parametric model predictive control

MRI morari resiliency index

MSE mean squared error

NLP nonlinear programming

NMPC  nonlinear model predictive control

PI process intensification

PID proportional-integral-derivative controller

E-mail address: cesar.ramirez@umich.mx (C. Ramirez-Marquez).

https://doi.org/10.1016/j.cep.2025.110388

Received 3 March 2025; Received in revised form 18 May 2025; Accepted 31 May 2025

Available online 1 June 2025

0255-2701/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


mailto:cesar.ramirez@umich.mx
www.sciencedirect.com/science/journal/02552701
https://www.elsevier.com/locate/cep
https://doi.org/10.1016/j.cep.2025.110388
https://doi.org/10.1016/j.cep.2025.110388

C. Ramirez-Marquez et al.

P-1 proportional-integral controller
MPC model predictive control

PMF photocatalysis-membrane filtration
PMRs photocatalytic membrane reactors
PRI process route index

PSD pressure-swing distillation

PSO particle swarm optimization
QDMC  quadratic dynamic matrix control

R-DWC reactive divided wall columns

RGA relative gain array

RSM response surface methodology
SMC sliding mode control

SVD singular value decomposition

TAC total annual cost

TCED triple-column extractive distillation
TOC total organic carbon

TPA terephthalic acid
1. Introduction

Process intensification (PI) has redefined chemical and process en-
gineering, offering solutions to the pressing demands for efficiency,
sustainability, and resilience in industrial systems [1]. By integrating
unit operations and optimizing resource utilization, PI achieves higher
productivity while significantly reducing energy consumption, emis-
sions, and waste [2]. Its applications across diverse industri-
es—pharmaceuticals, petrochemicals, and energy—demonstrate its
potential to transform traditional manufacturing practices into stream-
lined, cost-effective, and environmentally friendly systems [3]. How-
ever, the success of PI heavily depends on the design and
implementation of robust control systems capable of managing its
inherent complexity and dynamic behavior [4,5].

PI was initially considered challenging in terms of control due to its
complex topology and the integration of multiple unit operations within
a single unit. This led to the assumption that intensified processes would
inherently exhibit inferior controllability compared to conventional
systems. However, subsequent research has demonstrated that this is not
necessarily the case, as several studies have shown that control prop-
erties can be comparable or even superior to those of traditional pro-
cesses. For example, Agrawal et al. [6] initially identified the control
complexity of the Petlyuk column; however, later findings by
Alvarez-Ramirez & Monroy-Loperena [7] suggested that a simple
Proportional-Integral (P-I) controller could be sufficient for effective
operation. Moreover, Skogestad [8] emphasized that control entails
selecting degrees of freedom, which fundamentally shapes control
strategy design. This adds another layer of complexity, making control
design in intensified processes non-trivial yet not inherently
unmanageable.

Traditional control methods, including Proportional-Integral-
Derivative (PID) and P-I controllers, have long been the cornerstone of
process automation [9]. These methods are favored for their simplicity,
reliability, and effectiveness in maintaining steady-state operations
across a wide range of applications [10]. PID controllers, for example,
excel in controlling processes with relatively stable and predictable
dynamics, offering precise setpoint tracking and disturbance rejection.
However, when applied to intensified processes, traditional control
systems often encounter significant limitations due to the nonlinear,
multi-scale, and highly dynamic nature of these systems [11]. These
constraints necessitate a shift toward advanced control strategies
capable of addressing the unique challenges posed by P-I.

Modern advancements in control systems have introduced innova-
tive techniques, such as Model Predictive Control (MPC), which provide
predictive capabilities and handle multivariable interactions with
operational constraints. MPC has proven particularly effective in
intensified systems like reactive distillation and membrane separations,
where dynamic interactions and rapid response requirements are critical
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[12]. Moreover, hybrid control systems that integrate traditional PID
controllers with artificial intelligence (AI) models have emerged as
promising solutions [13]. These hybrid systems combine the robustness
of traditional control with the adaptability and learning capabilities of
Al enabling real-time optimization and fault detection in complex
processes [14].

The emergence of digital twins has further revolutionized the control
landscape for PI [15]. Digital twins are virtual replicas of physical
processes that allow real-time simulation, monitoring, and optimization
of operations [16]. These tools have gained traction for their ability to
enhance decision-making by providing predictive insights and enabling
proactive adjustments to maintain optimal performance. For instance,
digital twin technology has been applied in intensified separation pro-
cesses to dynamically simulate and adjust operational parameters,
improving energy efficiency and reducing downtime [17].

Sustainability is at the core of PI, driving innovation in control sys-
tems to meet environmental and operational goals [1]. Traditional PID
and P-I controllers, while effective in steady-state scenarios, lack the
flexibility to accommodate rapid changes in operating conditions and
environmental constraints. Advanced control systems incorporating Al
and machine learning algorithms have demonstrated their potential to
significantly reduce energy consumption, improve resource utilization,
and minimize waste [18]. For instance, Ukoba et al. [19] emphasized
how advanced Al-based control strategies optimize the monitoring and
operation of renewable energy systems, enhancing grid stability and
flexibility through precise forecasting techniques and real-time dynamic
adjustments. Similarly, circular economy principles have been inte-
grated into PI systems, promoting resource recovery and by-product
reuse through centralized control platforms [20].

Despite these advancements, challenges remain in scaling advanced
control strategies to industrial applications. Many industries still rely
heavily on legacy PID-based systems, making the transition to Al-
enhanced or MPC frameworks resource-intensive and complex.
Furthermore, intensified processes often require sophisticated sensor
networks and high-fidelity data acquisition systems to enable real-time
monitoring and control [21]. Scalability, interoperability, and
cost-effectiveness are critical barriers to the widespread adoption of
these technologies.

This review provides a comprehensive analysis of the state-of-the-art
in process intensification control, examining the evolution from tradi-
tional PID and P-I controllers to advanced Al-driven and predictive
strategies. It explores the integration of digital twins and sustainability-
focused innovations, highlighting their transformative impact on oper-
ational efficiency and environmental performance. The primary
contribution of this work lies in bridging foundational control tech-
niques with cutting-edge technologies, offering a holistic perspective
that identifies challenges, opportunities, and future research directions
in the field of process intensification control.

2. Overview of process intensification

PI represents a transformative approach in chemical engineering,
aiming to enhance the efficiency, sustainability, and compactness of
industrial processes [22]. By integrating multiple operations, optimizing
energy and material utilization, and minimizing equipment size, PI ad-
dresses the growing demand for environmentally and economically
viable production methods [23]. Among the various technologies
developed under the PI framework, intensified distillation processes
stand out for their ability to tackle energy-intensive separation chal-
lenges, making them a focus of this review.

PI encompasses a diverse range of technologies designed to optimize
energy and resource usage while minimizing operational complexity
(Table 1). These include microreactors, which enable precise reaction
control in compact systems; compact heat exchangers, which enhance
thermal efficiency; plasma-assisted processes, which use plasma energy
to accelerate chemical reactions; and supercritical fluid technologies,
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Table 1
Key intensified processes and their characteristics.
Intensified Description Key Applications Benefits
Process
Dividing Wall A single column with Petrochemicals, Reduced
Columns an internal dividing alcohol separation.  energy
(DWCs) wall to achieve consumption
multiple separations; and equipment
thermodynamically footprint.
equivalent to Petlyuk
configurations.
Extractive Uses a solvent to alter Purification of Higher purity
Distillation the relative volatilities ~ azeotropic or close-  with lower
of components for boiling mixtures. energy
separation. requirements.
Reactive Integrates chemical Production of Reduces
Distillation reaction and esters, biodiesel, equipment size
distillation in a single and specialty and enhances
column. chemicals. reaction
efficiency.
Membrane- Combines membrane Water purification,  Improved
Assisted technology with alcohol recovery, selectivity and
Distillation distillation for and hybrid lower
enhanced separation. separations. operational
costs.
Microreactors Compact systems that Pharmaceuticals, Faster reaction

enable precise control
over reaction kinetics
and thermodynamics.

fine chemicals. rates,
scalability, and
reduced waste.

which leverage the unique properties of supercritical states for efficient
extraction and reaction [24].

The distillation technologies—dividing wall columns (DWCs),
Extractive Distillation (ED), reactive distillation, and membrane-assisted
distillation—exemplify the principles of PI by integrating or enhancing
traditional separation methods to achieve superior performance [25].
DWCGs, for instance, integrate multiple separation steps into a single unit,
significantly reducing energy consumption and equipment size [26]. It is
important to note that DWCs are thermodynamically equivalent to
Petlyuk configurations, which provide an alternative design approach
depending on process constraints and design preferences [27].

ED introduces a selective solvent to alter the relative volatilities of
components, enabling the separation of azeotropic or closely boiling
mixtures [28]. This method is widely used in the purification of solvents,
specialty chemicals, and fuels [29]. Reactive distillation, on the other
hand, integrates reaction and separation in a single unit, optimizing
equilibrium-limited reactions such as esterification and biodiesel pro-
duction [30]. Finally, membrane-assisted distillation combines the
selectivity of membranes with the separation capabilities of distillation,
enhancing energy efficiency and broadening the applicability of tradi-
tional methods [31].

While there are numerous intensified processes within the broader
scope of PI, the focus on these distillation technologies reflects their
widespread industrial relevance and their transformative potential in
separation processes. This targeted approach enables an in-depth
exploration of their principles, applications, and contributions to
advancing industrial efficiency and sustainability.

3. Challenges in control of intensified processes

The control of intensified processes represents a paradigmatic chal-
lenge that transcends conventional techniques due to the convergence of
nonlinear dynamics, extreme physical constraints, and the need for
unprecedented operational integration [32]. As the chemical and pro-
cess industries transition toward more compact, sustainable, and highly
efficient configurations, complex issues arise related to operational
stability, the predictive capability of models, and the adaptability of
control systems to abrupt changes in system conditions.

These limitations are further exacerbated in intensified processes,
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where dynamic interactions, low residence times, and reduced process
inertia lead to heightened sensitivity to disturbances. Variability in
feedstock composition, sensor noise, actuator saturation, and model-
plant mismatch are all examples of process uncertainties that can
destabilize performance when not properly managed. Therefore, suc-
cessful control strategies must be designed with built-in resilience to
such disturbances, particularly in multiscale systems characterized by
tight coupling and limited buffering capacity.

One of the most intriguing aspects in this field is the difficulty of
modeling emergent behaviors arising from interactions between
coupled processes. For instance, in multifunctional reactors where re-
action and separation occur simultaneously, small fluctuations in one
variable can unpredictably amplify, driving the system into undesirable
operating zones [11]. This high sensitivity necessitates control systems
that are not only robust but also capable of anticipating nonlinear
phenomena through advanced learning algorithms and simulations.

Additionally, the use of distributed sensors and monitoring systems
based on big data creates a scenario where the volume of information
generated surpasses the processing capacity of many traditional tools
[33]. Advances in hardware, particularly Graphics Processing Units
(GPUs), play a pivotal role in addressing these challenges. GPUs provide
massively parallel computing capabilities, enabling the processing and
analysis of substantial volumes of data in real-time [34]. This
advancement facilitates the implementation of predictive control sys-
tems based on hybrid models, which integrate real-time data with sim-
ulations grounded in physical principles, ensuring efficient management
of computational demands.

Technologies such as MPC based on hybrid models—combining real-
time data with simulations grounded in physical principles—offer a
promising avenue, albeit one still underutilized due to computational
and methodological limitations [35-37]. These solutions must be
capable of identifying critical patterns in real-time, enabling proactive
rather than reactive control decisions.

Furthermore, intensified processes often operate under extreme re-
gimes of pressure, temperature, and reaction rates, imposing severe
constraints on material selection and the design of sensors capable of
enduring such conditions without compromising precision or durability.
The lack of adaptive control tools for these extreme environments limits
the industrial application of these technologies, emphasizing the need
for interdisciplinary collaborations among materials engineering,
informatics, and control engineering [38].

Finally, scaling these solutions from pilot systems to industrial en-
vironments remains a critical obstacle. Discrepancies between models
developed in laboratories and the inherent complexities of industrial
operations, such as interactions with external systems and economic
constraints, hinder the direct application of many advanced control
strategies [39]. This underscores the importance of scalable and adap-
tive approaches that account for both uncertainty and the variability
intrinsic to industrial processes.

The control of intensified processes demands a paradigm shift inte-
grating hybrid modeling tools, artificial intelligence, and material
design to address the challenges of stability, predictability, and scal-
ability. The convergence of these approaches can pave the way for a
future where process intensification becomes not only a technological
reality but also an industrial standard.

4. Recent advances in process intensification control

This review analyzes 118 peer-reviewed articles published between
2000 and 2025, retrieved from the Scopus database. The selection
process was based on the following keywords: "Process Intensification
Control," "Advanced Control Strategies," "Reactive Distillation Control,"
"Dividing Wall Column Control," and "Extractive Distillation Control."
The reviewed articles were classified into two primary categories: (1)
the type of intensified process and (2) the control techniques employed.
The classification framework encompasses reactive separation systems



C. Ramirez-Marquez et al.

(reactive distillation, extractive distillation, and dividing wall columns),
catalytic and membrane reactors, hybrid separation processes, and
energy-integrated distillation. Furthermore, control strategies were
categorized into classical control (PID-based methods), advanced con-
trol (MPC, NMPC, ANN, soft sensors), and hybrid techniques integrating
Al and model-based control.

4.1. Classification of intensified processes and control strategies

The reviewed works were grouped according to the intensified pro-
cess they addressed and the control strategies implemented. Table 2
summarizes the classification and the primary findings.

4.2. Key findings and quantitative insights

The evaluation of control strategies in process intensification high-
lights key findings across different intensified processes. Each technol-
ogy, including RD, ED, DWC, Hybrid Membrane-Reactors, and Catalytic
Reactive Systems, has adopted specific control techniques to enhance
efficiency and stability. The following section presents quantitative in-
sights into how these processes benefit from advanced control ap-
proaches, improving performance, energy savings, and overall
operational effectiveness.

4.2.1. Reactive distillation (RD)

In this section, the main works related to the control of RD columns
are presented, highlighting advances in control strategies, operational
optimization, and improvements in the stability and efficiency of these
intensified systems.

Al-Arfaj and Luyben [40] analyzed control strategies for an ideal
two-product RD column, evaluating six alternative structures. They
found that integrating composition analyzers in the reactive zone
improved reactant inventory control and reaction stoichiometry. Dy-
namic simulations showed that increasing reactive zone holdup (1 to 2
kmol/tray) significantly enhanced controllability, maintaining product
purities of up to 98 % under a 20 % feed flow disturbance. Single-end
temperature control stabilized product quality while simplifying con-
trol loop interactions. Overdesigning the reactive section (increasing
catalyst holdup or adding reactive trays) improved both steady-state and
dynamic control. Feedback-based feed adjustments prevented stoichio-
metric imbalances, ensuring stability under varying conditions.

Balasubramhanya and Doyle [41] developed a reduced-order
nonlinear model for nonlinear model-based control (NMPC) of batch
RD columns, reducing computational complexity while maintaining
accuracy. The model, based on traveling wave phenomena, required
only five differential and six algebraic equations instead of the original
31 differential equations. Applied within an NMPC framework, it ach-
ieved tight distillate composition control through tray temperature
regulation. The approach reduced simulation time by a factor of 6.5
while maintaining comparable control performance, demonstrating the
potential of reduced-order models for efficient NMPC in RD systems.

Vora and Daoutidis [42] investigated control strategies for an RD
column producing ethyl acetate, implementing a multiple-feed config-
uration to enhance conversion (from 66 % to 76.8 %) and product purity
(from 54 % to 65 %). They identified a two-time-scale dynamic
behavior, where conventional multiloop controllers struggled with input

Table 2
Control techniques applied in process intensification technologies.

Process Intensification Technology Control Techniques Used

Reactive Distillation (RD)
Extractive Distillation (ED)
Dividing Wall Columns (DWC)
Hybrid Membrane-Reactors
Catalytic Reactive Systems

PID, MPC, NMPC, ANN, Soft Sensors
PID, MPC, Dual Temperature Control
MPC, Inferential Control, Ratio Control
MPC, ANN, Self-Optimizing Control
NMPC, Adaptive MPC, Al-based Control
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multiplicity and nonlinearities. A nonlinear feedback controller based
on an exact dynamic model outperformed SISO P-I controllers,
improving setpoint tracking and disturbance rejection. A control strat-
egy focusing on slow dynamics enhanced robustness against modeling
errors, reducing instability risks, and highlighting the necessity of
nonlinear control in RD systems.

Al-Arfaj and Luyben [43] examined control strategies for an olefin
metathesis RD column, evaluating three steady-state designs with
varying pressure and conversion levels. Control studies demonstrated
that dual temperature control—manipulating tray temperatures via
reflux and boilup rates—maintained product purity under +25 % feed
disturbances. Higher pressure designs with additional trays reduced
product quality deviations. The study concluded that temperature-based
control structures detect disturbances faster than composition-based
control, providing an optimal balance of economic efficiency and
operability.

Georgiadis et al. [44] explored the integration of design and control
in RD systems for ethyl acetate production, comparing sequential and
simultaneous optimization approaches. The simultaneous method
reduced annual costs by 5 % ($220,000) while improving controlla-
bility. Optimal design parameters, including a column diameter of 6.37
m and heat exchanger areas of 315 m? (reboiler) and 425 m?
(condenser), enhanced dynamic performance. The system managed si-
nusoidal feed disturbances and diurnal cooling variations, achieving
tighter bottom product purity control and a 10 % reduction in integral
square error. Their findings demonstrated the advantages of integrating
design and control using mixed-integer dynamic optimization (MIDO)
for process intensification.

Al-Arfaj and Luyben [45] conducted an in-depth control study on
methyl acetate RD, evaluating three control structures—CS1, CS5, and
CS7—under high- and low-conversion scenarios. CS1, which used three
composition controllers for stoichiometric feed control, struggled with
nonlinearity in high-conversion conditions but achieved 95 % conver-
sion and 95 % purity in low-conversion cases. CS5, integrating a
composition controller with a stripping section temperature controller,
maintained methyl acetate purity between 95.98 % and 96.03 % and
water purity above 98.55 %, even under 20 % acetic acid feed distur-
bances. CS7, a temperature-based control structure optimized using
singular value decomposition (SVD), identified the most sensitive trays
and maintained product purities close to specification despite a 20 %
reboiler duty increase. The findings highlight the superiority of
temperature-based control in handling nonlinearities and improving
robustness under high-purity operations.

Al-Arfaj and Luyben [46] analyzed the control of ethyl tert-butyl
ether (ETBE) RD columns, comparing double-feed and single-feed sys-
tems. The double-feed configuration required internal composition
control to balance stoichiometry, whereas temperature control alone
sufficed for the single-feed setup under moderate disturbances. The
optimized double-feed system, producing 700 kmol/h of ETBE with 99
% conversion, showed superior dynamic performance when butene feed
manipulation was used for internal composition control, achieving 99 %
ETBE purity in the bottoms with minimal ethanol losses. Simulations
demonstrated that direct composition control provided better robust-
ness against feed rate and composition disturbances (+25 % and +10
%), whereas temperature control alone risked purity losses under larger
disturbances.

Griiner et al. [47] developed a nonlinear control strategy for RD
columns using input/output-linearization combined with an observer,
achieving enhanced performance in industrial-scale applications. The
controller, relying solely on temperature measurements, maintained
product purity under +5 % feed composition disturbances. Compared to
a well-tuned linear controller, the nonlinear approach reduced settling
times, achieving faster convergence with a 75 K setpoint change and
improved decoupling of tray temperatures (Ts and Teo). Additionally, it
provided superior disturbance rejection, stabilizing key compositions
under +10 % feed flow variations, demonstrating the advantages of
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nonlinear control for operational robustness in intensified processes.

Al-Arfaj and Luyben [48] studied the plantwide control of TAME RD
production, identifying the RD column as the critical unit. Their control
strategy, combining methanol feed regulation with temperature control
on specific trays, ensured stable operation under +20 % feed distur-
bances. The optimized design achieved 92 % isoamylenes conversion
with minimal methanol consumption (508.31 kmol/h), maintaining
separation efficiency with low reflux ratios (0.5 for methanol and 1 for
C5s). These results confirm that integrating process-wide control struc-
tures enhances stability and efficiency in etherification RD systems.

Huang et al. [49] proposed a temperature control framework for
heterogeneous RD processes, addressing vapor-liquid-liquid equilibria
(VLLE) and kinetically controlled reactions. Their design, including
optimized feed tray locations and decentralized PI controllers, achieved
99 % product purity while maintaining low acid impurity levels. Using
the nonsquare relative gain (NRG) method, they identified optimal
temperature-control trays, enabling one-way decoupled multivariable
control. Feedforward temperature compensation eliminated
steady-state offsets and improved transient responses, ensuring stringent
purity specifications under production rate variations. The results un-
derscore the potential of temperature-based control for enhancing the
stability and efficiency of heterogeneous RD systems.

Kaymak and Luyben [50] conducted a comparative study of two
temperature-based control structures for RD columns, evaluating their
dynamic performance under disturbances. CS7, using two P-I controllers
to regulate fresh feed flow rates, showed rapid stabilization but
aggressive responses. In contrast, CS8 combined feed and reboiler heat
duty manipulations, improving sensitivity and dynamic stability
through optimal tray pairings. In the methyl acetate case, CS8A out-
performed CS8B, maintaining product purity within 1 % of the 95 %
target under disturbances, while CS8A effectively controlled feed
composition variations up to 5 %. The study highlighted the importance
of sequential tuning in interacting controllers to enhance system sta-
bility in complex RD processes.

Khaledi and Young [51] developed a 2 x 2 unconstrained MPC
scheme for controlling product purity and reactant conversion in an
ETBE RD column, addressing nonlinearities and process gain bidir-
ectionality. Using a first-order plus dead time model, their MPC
controller achieved robust disturbance rejection and smooth set-point
tracking. At 100 kmol/h feed flow and 950 kPa operating pressure, a
+ 3 °C step change at stage 7 demonstrated superior performance over
PI controllers, maintaining isobutylene conversion above 98 % and
ETBE purity at 88.7 wt %. The results underscored the effectiveness of
MPC in stabilizing complex RD systems despite feed composition vari-
ations and measurement noise.

Olanrewaju and Al-Arfaj [52] proposed a linearized state-space
model for RD process control, addressing delays in online composition
analyzers by implementing a Kalman filter-based state estimator. The
estimator, coupled with a dual-end composition control strategy,
maintained setpoints within +2 % despite plant-model mismatches and
disturbances. When the reactant B feed flow increased by 10 %, doubling
the controller gains improved response times and stability. The study
highlighted that while small estimation errors were tolerable, significant
deviations in volatilities or initial conditions degraded control accuracy,
demonstrating the viability of linear state estimators in enhancing
operational efficiency in RD processes.

Panjwani et al. [53] developed a mixed-integer dynamic optimiza-
tion (MIDO) framework for simultaneous RD system design and control,
achieving a 17 % reduction in total annualized costs. The optimal
configuration, integrating column diameter, tray configurations, and
reboiler/condenser surface areas, reduced reflux rate and steam con-
sumption by 8 % and 5 %, respectively. Their novel control scheme,
manipulating steam flow for feed tray temperature regulation rather
than direct composition control, demonstrated improved operability
under acetic acid inlet composition and cooling water temperature
disturbances. The study reinforced the advantages of integrating design
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and control to optimize intensified processes, with potential applications
in MTBE and ETBE production.

Hung et al. [54] analyzed the control of RD systems for the esteri-
fication of acetic acid with C1-C5 alcohols, evaluating three process
configurations using nonlinearity indices and sign reversal fractions.
Their findings showed that BuAc exhibited minimal nonlinearity and
high stability, while MeAc faced severe dynamic challenges due to input
multiplicities. Temperature control strategies in decentralized configu-
rations resulted in settling times of approximately 5 h for BuAc and
AmAc, and up to 15 h for MeAc. TAC values ranged from $482.54k for
BuAc to $1.04 M for MeAc at production rates of 52,825 tons/year. The
study emphasized the critical role of process-specific control strategies
in improving RD system performance and stability.

Kawathekar and Riggs [55] investigated the application of NLMPC to
an ethyl acetate RD column, demonstrating its superiority over P-I
controllers in managing strong nonlinearities. For the [L/D,V] configu-
ration, NLMPC reduced the Integral of Absolute Error (IAE) from 2.41 to
0.91 for the overhead loop and from 6.84 to 2.14 for the bottom loop,
representing a 2-3-fold improvement in control performance. NLMPC
also maintained stability under unmeasured disturbances and exhibited
resilience to process-model mismatches of up to 25 %. Additionally,
implementing a two-column configuration with a recovery column
enabled high-purity ethyl acetate production (99.5 %), highlighting the
advantages of NLMPC in process intensification through enhanced
disturbance rejection and dynamic performance.

Lee et al. [56] developed advanced control strategies for ethyl ace-
tate RD, optimizing sensor placement via closed-loop sensitivity anal-
ysis. Their dual-point control strategy maintained EtAc purity above
99.5 % under +20 % throughput variations, reducing impurity de-
viations to 2 %. Sensor relocation improved steady-state performance
and dynamic controllability, mitigating overshoot and deviations caused
by acid feed composition fluctuations. The study quantified trade-offs,
showing that while dual-point control improved operability and
disturbance rejection, it introduced more oscillatory responses than
single-point control. These findings underscore the role of sensor opti-
mization in enhancing stability and efficiency in RD processes.

Kumar and Kaistha [57] analyzed the impact of steady-state multi-
plicities on methyl acetate RD control, demonstrating that fixed reflux
rate policies induced unwanted transitions, while a fixed reflux ratio
approach improved stability. A novel rangeability metric quantifies
input multiplicity severity, guiding the selection of optimal control
variables. Dynamic simulations showed that controlling a pseudo-output
(AT = T20 - T8) enhanced robustness, whereas controlling the most
sensitive tray temperature (T18) led to instability. Ratio control between
feeds and reboiler duty enabled the system to handle production rate
increases of up to 40 %, highlighting the necessity of systematic sensi-
tivity analysis for robust RD control.

Kumar and Kaistha [58] examined two RD configurations—5-10-5
(10 reactive trays) and 5-20-5 (20 reactive trays)—to assess their dy-
namic behavior and control performance. The 5-20-5 design handled
+20 % throughput disturbances within 4 h, whereas the 5-10-5 design
exhibited slower responses. CS2, which manipulated the heavy reactant
feed, outperformed CS1 in transient stoichiometric balance, stabilizing
throughput changes up to +70 %. Controlling reactive tray temperature
(T15) provided superior disturbance rejection compared to rectifying
tray control (T18). Despite an 11.8 % increase in vapor boil-up and
slightly higher cost ($310,730/year vs. $298,160/year), the 5-20-5
configuration demonstrated better sensitivity and controllability,
emphasizing the importance of optimized catalyst distribution and tray
design.

Hsu et al. [59] proposed an intensified RD and ED process for
dimethyl carbonate (DMC) and ethylene glycol (EG) production,
achieving complete ethylene carbonate (EC) conversion with excess
methanol. Using aniline as an entrainer, they enhanced methanol-DMC
relative volatility, reducing reboiler duty by 32.8 %, entrainer feed ratio
from 1.965 to 0.883, and column heights, cutting ED stages from 48 to
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32 and recovery column stages from 32 to 18. Simple tray temperature
control loops maintained 99.5 % DMC and 99.99 % EG purities, ensuring
stability under feed and throughput variations. These results demon-
strated the economic and operational advantages of the aniline-based
separation strategy in RD systems.

Wang et al. [60] developed an integrated plant-wide control
framework for DMC and EG production via RD coupled with thermally
coupled ED, achieving a 17.6 % reduction in reboiler duty compared to
conventional ED. The control strategy employed steady-state analysis to
optimize manipulated and controlled variables, ensuring product pu-
rities of 99.8 % DMC and 99.99 % methanol. Temperature control loops
effectively mitigated disturbances, maintaining stoichiometric balance
under feed rate fluctuations and vapor split ratio variations. Dynamic
simulations confirmed that the control scheme maintained process de-
viations within acceptable margins, establishing thermally coupled ED
as an energy-efficient strategy for RD systems.

Kim et al. [61] applied nonlinear wave propagation theory to the
control of an RD column for terephthalic acid (TPA) synthesis, opti-
mizing composition profile positioning to enhance conversion and pu-
rity. A wave propagation model demonstrated that continuous methanol
removal minimized equilibrium limitations, enabling near-complete
conversion. Profile position control, adjusting vapor and liquid flow
rates, stabilized wave positions, and maintaining TPA yield above 98 %
with minimal methanol contamination. The control framework out-
performed traditional temperature control, ensuring fast recovery from
+20 % feed flow variations, underscoring the potential of nonlinear
wave theory in process intensification.

Sharma and Singh [62] reviewed advanced RD control strategies,
highlighting MPC, DMC, QDMC, and NMPC as superior alternatives to
conventional PI/PID controllers. Case studies demonstrated NMPC’s
improved composition control in ethyl acetate RD, dual-temperature
control’s robustness in methyl acetate RD, and composition control’s
effectiveness in MTBE decomposition. Additionally, RD integrated with
DWC achieved 50 % energy savings. Dual-temperature loops in RDWDC
enhanced ethyl acetate synthesis stability under disturbances. These
findings reinforce the role of advanced control strategies in optimizing
RD operability and efficiency, setting the stage for Al-driven adaptive
control in intensified systems.

Lin et al. [63] optimized reactive section distribution in an olefin
metathesis RD column, comparing four configurations. Design-II
reduced reboiler duty by 5.27 % but degraded controllability, while
Designs III and IV, which extended the reactive section, achieved
reboiler duty reductions of 4.51 % and 4.30 %, maintaining superior
control performance. A dual-point temperature control scheme showed
that Design-II had larger bottom purity deviations, whereas Designs III
and IV minimized steady-state errors. Control performance metrics,
including IAE and steady-state deviation (SSD), confirmed that reactive
section distribution significantly influences both energy efficiency and
dynamic stability in RD systems.

Nikacevic et al. [64] analyzed control challenges in intensified pro-
cesses such as RD, DWC, and micro-scale reactors, emphasizing NMPC’s
superiority over traditional controllers. In an ETBE RD column, a 2 x 2
unconstrained NMPC scheme reduced composition variability by 35 %
and improved conversion efficiency by 25 % compared to PID control.
The study highlighted NMPC’s robustness against nonlinearities and
process interactions, reinforcing its potential for industrial-scale appli-
cations in process intensification.

Ignat and Kiss [65] designed an R-DWC for FAME production, inte-
grating RD and DWC technologies to achieve 39 % fewer stages, 57 %
fewer reactive trays, and only a 1.5 % heat duty increase. By feeding
alcohol as vapor, the system improved product purity and impurity
control in side streams. SVD identified sensitive trays for inferential
temperature control, enabling robust disturbance rejection, including
production rate fluctuations and catalyst deactivation. The control
scheme maintained 99.8 % purity for methanol and water, demon-
strating R-DWC’s potential for optimizing energy efficiency and
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sustainability in biodiesel production.

Seban et al. [66] developed an MPC framework for RD columns,
integrating Generalized Orthonormal Basis Filter (GOBF) and Autore-
gressive Moving Average (ARMA) models to enhance dynamic process
representation. The GOBF-ARMA MPC achieved superior control per-
formance, precisely tracking a distillate purity setpoint increase from
0.95 to 0.96 mol % while minimizing energy consumption. A 2.5 % feed
rate disturbance was effectively mitigated, demonstrating robust
disturbance rejection. This approach optimizes energy use through in
situ heat integration, improving operational reliability and safety, and
highlighting its potential for broader industrial applications.

Segovia-Hernandez et al. [67] reviewed RD control advancements,
focusing on deterministic and stochastic optimization methods to
enhance process intensification. Deterministic approaches, such as
MINLP and dynamic programming, optimized design parameters,
achieving over 20 % energy savings. Stochastic techniques, including
NSGA-II, improved multi-objective RD optimization, enabling 99.9 %
purity in esterification processes while reducing energy consumption
and CO:z emissions by 25 %. Case studies on methyl acetate and ETBE
demonstrated substantial cost reductions and improved control perfor-
mance, emphasizing the role of simultaneous design and control opti-
mization in RD sustainability.

Valluru et al. [68] introduced a real-time optimization (RTO) and
adaptive NMPC framework for RD systems, integrating a nonlinear
Bayesian estimator (DAE-EKF) to update models dynamically. Applied
to an RD column with reaction A + B = C + D, this approach maintained
product concentration deviations below 1 % under a 10 % reactant B
feed rate disturbance. The adaptive NMPC, with prediction and control
horizons of 40 and 4, respectively, ensured offset-free mole fraction
control. Despite 20 min RTO computation times, the strategy dynami-
cally optimized product qualities, proving its economic and operational
benefits for intensified RD systems.

Baldea [69] analyzed the impact of process intensification on control
dynamics, demonstrating that high material recycling rates reduce
equipment size  but accelerate  system  responses. In
reaction-separation-recycle RD systems, intensified configurations with
vapor holdups of 1338 mol exhibited nearly twice the response speed of
integrated systems (1404 mol), as confirmed by eigenvalue analysis.
However, the faster dynamics introduced tighter process coupling and
control complexities. The study emphasized that intensified systems
require real-time MPC to handle nonlinear interactions, underscoring
process intensification’s unique control challenges and efficiency
opportunities.

Mansouri et al. [70] integrated process design and control in RD
systems using reactive driving force diagrams to optimize controlla-
bility. Dynamic simulations showed that operating at maximum driving
force improved stability, with a 12 % isobutene feed step increase
resulting in stable product compositions and minimal reflux ratio and
reboiler duty adjustments. Relative Gain Array (RGA) analysis
confirmed minimized loop interactions, facilitating robust controller
design. This methodology highlights the potential for achieving resilient
and sustainable RD systems through integrated design and control.

Mansouri et al. [71] proposed a computer-aided framework for
simultaneous RD process design and control, applying Mixed-Integer
Dynamic Optimization (MIDO) for economic feasibility and control
performance. In a case study on MTBE synthesis, the optimized design
achieved 98 % isobutene recovery and 84 % MTBE purity, with a
methanol conversion of 83.15 %. Step-response analysis and RGA cal-
culations verified that reflux-to-distillate and reboiler-to-bottom prod-
uct control pairings minimized disturbances while maximizing
controllability. This integrated approach enhances energy efficiency and
sustainability, demonstrating the benefits of process intensification
control.

Ramirez-Marquez et al. [72] evaluated control strategies for a
multitasking RD column producing high-purity silane, dichlorosilane,
and monochlorosilane. Under 10 % feed flowrate disturbances and 5 %
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contamination, temperature control stabilized the process with short
settling times (~3-5 h), despite minor steady-state deviations. Compo-
sition control achieved faster responses (~2-5 h) but required online
chromatographic measurements, limiting industrial feasibility. The
cascade strategy provided the best disturbance rejection and eliminated
steady-state offsets but had longer settling times (~7-10 h) and
increased complexity. Optimal column pressure (2.3 atm) balanced
transient response and energy efficiency, enabling seamless transitions
between product outputs by adjusting reflux ratio, reboiler duty, and
column pressure, ensuring flexible and stable high-purity silane
production.

Maya-Yescas et al. [73] analyzed process intensification control,
focusing on stability and manipulated variable selection. In an intensi-
fied RD biodiesel process, energy integration reduced cooling demand
by 91.8 % and heating requirements by 77.8 %, though it introduced
control challenges due to the loss of degrees of freedom. Advanced
control methods, such as nonlinear observers and Kalman filtering,
improved disturbance rejection. In FCC operations, improper variable
pairings led to unstable control despite multiple manipulated variables,
highlighting the need for robust observability analysis and optimal
control pairings to ensure process stability in highly intensified systems.

Mahindrakar and Hahn [74] implemented MPC for RD benzene hy-
drogenation, addressing process nonlinearity and fluctuating benzene
concentrations (3-11 vol %). SISO MPC with input disturbance correc-
tion outperformed P-I control, reducing benzene concentration de-
viations by 65 % and shortening settling times from 219 to 127 min.
MIMO MPC showed no additional benefits due to weak variable in-
teractions, confirmed by RGA analysis. The results demonstrated that
incorporating an input disturbance model enhances rejection perfor-
mance without requiring real-time composition measurements, offering
a cost-effective solution for intensified RD systems.

Chen et al. [75] developed a thermally coupled RD system for methyl
valerate (VAME) production, achieving a 30.3 % energy reduction,
though TAC decreased only by 17 % due to compressor inclusion. Dy-
namic simulations under +20 % throughput and +5 % composition
disturbances showed faster stabilization and smaller steady-state de-
viations compared to conventional setups. Product purities (99 mol %
VAME and water) remained stable, confirming the thermally coupled
system’s robustness. The study highlights thermal coupling as a viable
strategy for enhancing both economic and operational performance in
industrial-scale RD applications.

Mansouri et al. [76] introduced a hierarchical decomposition
framework integrating process design and control for multi-element RD
systems. In MTBE production, the optimal seven-stage RD design
required 856.6 kW, significantly lower than alternative designs
exceeding 2000 kW. Dynamic performance analysis demonstrated rapid
rejection of a + 16.5 % methanol feed disturbance with minimal over-
shoot. Sensitivity analysis, RGA, and MPC outperformed P-I controllers,
reducing control effort and enhancing disturbance rejection. The study
underscores how integrating process intensification control optimizes
energy efficiency, economic viability, and operational robustness in
chemical processes.

Giwa et al. [77] applied MPC to a biodiesel RD system, optimizing
tuning parameters (control horizon: 11, prediction horizon: 18, manip-
ulated variable rate weight: 0.05, output weight: 2.17) to achieve
set-point tracking within 60 min with minimal oscillations. Under a
0.4-unit step change, IAE and ISE were reduced to 6.05 and 2.05,
respectively, demonstrating MPC’s efficiency in servo control. However,
disturbance rejection exhibited prolonged settling times (~800 min),
indicating challenges in dynamic disturbance management. Compared
to PID control, MPC provided superior precision and reduced oscilla-
tions, though further tuning is needed for improved response under
variable operating conditions.

Dias and Ierapetritou [78] reviewed intensified process control ad-
vancements, highlighting NMPC’s capability to handle dynamic distur-
bances but noting computational complexity as a limitation.
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Multi-parametric NMPC (mp-MPC) emerged as a viable alternative,
reducing online computation times in pressure swing adsorption. Inte-
grating scheduling with control enhanced transient operation efficiency,
while EMPC outperformed conventional strategies in economic perfor-
mance. The study emphasized the potential of Al and parallel computing
in real-time optimization, improving sustainability and efficiency in
chemical process industries.

Ge et al. [79] optimized RD and RDWC configurations for formic acid
production using genetic algorithms, with RDWC achieving a higher
methyl formate conversion (88.7 %) than RD (72.4 %) despite a slight
increase in energy consumption (8.2 %) and total annual cost (4.3 %).
Dynamic control comparisons showed that MPC significantly out-
performed PI control, reducing maximum deviations and improving
settling time and ISE. For a + 10 % feed disturbance, MPC reduced tray
temperature deviations (e.g., T40, RD) from 8.4 °C under PI to 1.3 °C,
demonstrating its effectiveness in managing nonlinear interactions and
improving system operability.

Sakhre [80] conducted a comprehensive review of advancements in
RD control, focusing on strategies to address nonlinearity, process effi-
ciency, and optimization techniques. The study explored the application
of MINLP for RD configuration optimization, highlighting its role in
achieving cost-effective designs and improving process feasibility. The
review emphasized the importance of integrating model-based control
approaches to enhance stability, minimize energy consumption, and
ensure robust operation in intensified RD systems. These findings
demonstrate the ongoing evolution of control methodologies aimed at
increasing efficiency and sustainability in reactive distillation.

Pistikopoulos et al. [81] analyzed intensified and modular process
control, showing that intensified RD designs impose narrower opera-
tional windows and stricter constraints. Multi-parametric MPC
(mp-MPC) demonstrated superior disturbance rejection over P-I con-
trollers, maintaining product purity. Modular RD in olefin metathesis
improved operability via increased DOFs, allowing synchronized oper-
ations across parallel units but raising the total annual cost by 18.8 %.
The study emphasized integrated design-control frameworks as key to
optimizing dynamic performance, market adaptability, and sustain-
ability in intensified processes.

Alcantara Avila et al. [82] conducted a comprehensive review on
process intensification control, emphasizing the integration of optimi-
zation and control strategies to improve efficiency, sustainability, and
dynamic operability. The study highlights the increasing complexity of
intensified systems, necessitating advanced methodologies for real-time
optimization. A key focus is on superstructure-based optimization,
particularly MINLP, for systematically evaluating process configurations
and optimizing RD systems. The review also discusses simultaneous
design and control methodologies, such as MIDO, to enhance system
resilience and disturbance management. Findings demonstrate that
energy-efficient control strategies, including thermally coupled RD
configurations, can achieve significant energy savings while maintain-
ing robust performance. The study underscores the importance of inte-
grating process intensification, optimization, and control to develop
next-generation intensified systems with enhanced operational stabil-
ity and economic feasibility.

Tian et al. [83] developed a simultaneous design and control
framework for RD systems, integrating MIDO and Explicit MPC to
enhance process intensification. The study introduced design-aware
control, linking control laws to design variables such as column diam-
eter and catalyst distribution. Applied to an MTBE RD system, this
approach reduced total annualized cost by 7 % while maintaining 98 %
bottom product purity under disturbances. By leveraging explicit MPC,
the system identified 17 critical operating regions, ensuring rapid,
computationally efficient responses to feed variations. The findings
highlight how integrating control into the design phase enhances
operability, economic performance, and robustness, representing a
major step forward in process systems engineering.

Iftakher et al. [84] proposed an integrated design and control
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framework for RD systems, using the driving force approach to optimize
process performance and controllability. The study demonstrated that
maximum driving force-based designs improved energy efficiency,
reduced CO: emissions, and enhanced dynamic control. Through
steady-state and dynamic simulations in Aspen Plus, multi-objective
performance metrics were evaluated, including energy consumption,
control indices (RGA, NI), and disturbance rejection capabilities. Results
showed that optimized designs reduced energy consumption by 15 %
and improved control efficiency by 20 %, maintaining minimal loop
interaction (RGA ~1) and stable responses under P-I and MPC control.
The study underscores the importance of integrating design and control
methodologies to develop sustainable and operable intensified
processes.

Iftakher et al. [85] introduced the RD-Toolbox, a computer-aided
platform for integrating RD process design and control, addressing the
complexities of intensified systems. This tool automates steady-state and
dynamic simulations while enabling controllability evaluation. The
study compared superstructure optimization and driving force-based
methods for ETBE and ethyl acetate RD systems, showing that driving
force-based designs reduced energy consumption by 25.2 % despite
lower profit margins due to reduced production. Both designs demon-
strated effective disturbance rejection under P-I and MPC, with RGA
values near unity and NI confirming stability. In ethyl acetate produc-
tion, the RD-Toolbox optimized a 15-stage column at maximum driving
force, ensuring robust control performance. This tool represents a sig-
nificant advancement in RD process development, systematically opti-
mizing energy efficiency and control robustness.

Contreras-Zarazia et al. [86] explored process intensification for
biojet fuel production via the Alcohol-to-Jet (ATJ) pathway, replacing
conventional oligomerization with a catalytic RD column. This intensi-
fied design achieved a 20 % reduction in TAC, a 50 % decrease in
environmental impact (Eco-indicator 99), and a 22 % lower accident
risk. The system directly produced hydrocarbons (C8-C16) meeting
ASTM D7566-21 biojet fuel specifications, eliminating additional frac-
tionation steps. Control studies validated the feasibility of P-I and MPC
strategies, with P-I control demonstrating 30 % lower IAE and better
disturbance rejection. While MPC exhibited advantages for complex
scenarios, its performance was limited under large disturbances due to
predictive model constraints. These findings confirm RD’s potential to
enhance efficiency, reduce environmental impact, and improve opera-
tional safety, making it a viable solution for sustainable aviation fuel
production.

Moraru et al. [87] developed a plantwide control strategy for RD
systems with recycle streams, focusing on material inventory balance,
reaction stoichiometry maintenance, and ensuring production rate and
product purity. The strategy was validated through dynamic simula-
tions, where flowrate and composition variations were introduced to test
the proposed control structure. The results demonstrated the system’s
ability to maintain operational stability under disturbances, ensuring
process performance remains within the desired specifications.

4.2.2. Extractive distillation (ED)

This section reviews recent studies on the control of ED systems,
focusing on strategies for improving process stability, optimizing solvent
selection, and enhancing energy efficiency. Advances in dynamic
modeling and control methodologies are analyzed to address opera-
tional challenges and improve system performance.

Luyben [88] analyzed the impact of solvent selection on the dynamic
controllability of ED processes, demonstrating that solvent properties
significantly influence both steady-state economics and control perfor-
mance. Using Aspen Plus and Aspen Dynamics, the study compared
three solvents—water, dimethyl sulfoxide (DMSO), and chlor-
obenzene—for separating an acetone-methanol azeotropic system.
DMSO exhibited superior control stability, achieving 99.95 % purity for
both acetone and methanol, with a 7 % faster stabilization time (1 h vs.
1.5-2 h for other solvents). Control strategies involved dual temperature
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control loops, with the chlorobenzene system requiring additional
steam-to-feed ratio controllers due to its slow transient response. The
findings emphasized that solvent selection should integrate dynamic
controllability criteria, as solvents with optimal VLE properties enhance
process stability and economic efficiency without introducing additional
control complexities.

Wang et al. [89] optimized an ED system for methylal/methanol
separation, evaluating control performance using Aspen Plus and Aspen
Dynamics. The study compared two control structures: a fixed reflux
ratio scheme and a reflux-to-feed (R/F) ratio strategy, demonstrating
that the R/F control approach significantly improved disturbance
rejection, effectively handling 20 % fluctuations in feed flow rate and
composition. The optimized system, featuring an ED column with 52
stages and an entrainer recovery column with 22 stages, maintained a
methylal purity of 99.9 wt % at an entrainer flow rate of 2900 kg/h. The
R/F control strategy reduced total annualized cost (TAC) to $615,390,
highlighting its efficiency in enhancing both economic feasibility and
dynamic stability in intensified separation processes.

Gil et al. [90] developed an ED process for ethanol dehydration using
glycerol as an entrainer, integrating energy-efficient control strategies.
The study identified optimal operating conditions, including a reflux
ratio of 0.35 and an entrainer-to-feed molar ratio of 0.45, yielding sig-
nificant energy savings. Two control strategies were implemented:
entrainer makeup flow rate control for recovery column level regulation
and entrainer feed flow rate control, with the latter demonstrating su-
perior dynamic performance. Under feed composition and flow distur-
bances, the second strategy stabilized within 2-3 h, maintaining ethanol
purity at >99.5 mol % with minimal temperature deviations (<3 °C).
These findings highlight glycerol’s viability as a sustainable entrainer,
achieving operational excellence while reducing energy demand.

Luyben [91] designed an ED control strategy for COz/ethane sepa-
ration in enhanced oil recovery (EOR) processes, addressing the chal-
lenge of a minimum-boiling azeotrope at cryogenic temperatures. A
two-column configuration using natural gas liquid (NGL) solvent effi-
ciently removed CO: in the extractive column’s distillate (95.57 mol %
purity) while recovering Cz and heavier hydrocarbons in the second
column. A plantwide control structure was developed, demonstrating
that single-end temperature control was insufficient due to solvent-light
key similarities. Instead, a composition controller regulating the
reflux-to-feed ratio ensured product purity stability despite feed dis-
turbances. Dynamic simulations confirmed stable reboiler and
condenser duties (73.32 MW and 110.2 MW, respectively), proving that
advanced control strategies can effectively manage azeotropic separa-
tions in industrial applications.

Ramirez-Marquez et al. [92] investigated dynamic control strategies
for ethanol dehydration ED processes, comparing five distillation con-
figurations, including conventional (CLR, CVR), side-stream (SSVR), and
thermally coupled (DWC-TCLR, DWC-TCVR) systems. The SSVR
configuration with glycerol demonstrated the best dynamic perfor-
mance, achieving the lowest IAE values for ethanol and water compo-
sition control. Specifically, SSVR-GL exhibited reboiler duties of
4902.93 kW and an annualized capital cost of $107.8k, outperforming
traditional configurations in energy efficiency and controllability.
Relative Gain Array (RGA) analysis revealed strong interactions across
all systems, with DWC-TCLR and SSVR showing improved stability
under RGA-based control loops. Additionally, glycerol exhibited lower
toxicity, reduced CO: emissions, and superior control behavior
compared to ethylene glycol. These findings highlight the potential of
side-stream and thermally coupled ED sequences in achieving sustain-
able and energy-efficient ethanol dehydration.

Ramos et al. [93] developed an optimal control strategy for ED in
fuel-grade ethanol production, employing glycerol as an entrainer to
enhance separation efficiency. The study applied dynamic optimization
using a DAE model, discretized via orthogonal collocation, and solved
through large-scale nonlinear programming in GAMS. Results demon-
strated that optimizing reflux ratio and reboiler duty significantly
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improved system stability, outperforming conventional P-I control
under sinusoidal and step disturbances. The optimal control approach
maintained product quality and economic profitability, achieving a 50
% net profit increase. Real-time feasibility was validated, with solution
times as low as 9 s, highlighting the potential of dynamic optimization in
process intensification.

Segovia-Herndndez et al. [94] investigated the controllability of
intensified bioethanol separation sequences, comparing conventional
(CLR, CVR), side-stream (SSVR), and thermally coupled (TCLR, TCVR)
ED systems. Using SVD, the study assessed system stability, showing that
SSVR and CVR with glycerol exhibited higher minimum singular values
and lower condition numbers, indicating superior dynamic robustness.
Closed-loop P-I control simulations confirmed that SSVR-GL achieved
the lowest IAE (0.00857) in ethanol purity control, outperforming
thermally coupled sequences. These findings emphasize the role of sol-
vent selection and process configuration in enhancing control perfor-
mance and operability in intensified separation systems.

Errico et al. [95] introduced a two-column ED configuration for
bioethanol purification, reducing capital costs by 10 % and energy
consumption by 4.5 % compared to traditional three-column setups.
Closed-loop dynamic analysis with P-I controllers showed superior sta-
bility, with the IAE for water control decreasing from 0.0929 to
0.000084. The optimized system achieved a 99 % ethanol recovery rate,
outperforming conventional sequences while also reducing COz emis-
sions (2.169 ton/h vs. 2.271 ton/h). These findings demonstrate that
process intensification can enhance both economic and environmental
performance, while maintaining robust control characteristics.

Luyben [96] compared the dynamic controllability of conventional
and thermally coupled ternary ED systems, analyzing benzene, cyclo-
hexane, and toluene separation. Aspen Dynamics simulations demon-
strated that the thermally coupled system reduced reboiler duty by 14 %
(3.632 MW vs. 4.230 MW) but exhibited inferior dynamic performance.
The conventional system, using pressure-compensated temperature
control, maintained 99 mol % benzene purity, while the thermally
coupled design required composition control due to a flat temperature
profile. Dynamic tests revealed greater purity deviations under feed
disturbances in the thermally coupled system, highlighting the trade-off
between economic efficiency and dynamic operability in intensified
processes.

Ahmadian Behrooz [97] developed a robust control strategy for the
ED of benzene-acetonitrile azeotropes, using dimethyl sulfoxide (DMSO)
as a solvent. The study optimized fixed reflux ratio and fixed
reflux-to-feed ratio control structures, demonstrating that reflux-to-feed
ratio control improved regulatory performance, maintaining 99 %
benzene and 99.9 % acetonitrile purity under Gaussian-distributed feed
variations (mean 65 wt % benzene, 6 = 3.5 wt %). Design modifications,
including two additional plates and increased column diameter, pro-
vided a safety margin against flooding. The optimized fixed
reflux-to-feed ratio structure (CS2) achieved faster transient responses,
superior disturbance rejection, and only a 6.94 % increase in TAC,
showcasing the effectiveness of integrating stochastic optimization with
dynamic control in azeotropic separations.

Zheng et al. [98] analyzed the dynamic controllability of
heat-integrated ED processes, comparing two novel configurations that
integrate preconcentration and entrainer recovery. While achieving
over 13 % energy savings, these systems introduced control challenges
due to reduced degrees of freedom. Using SVD, the authors optimized
temperature control tray selection and implemented three temperature
control loops, which effectively managed +20 % feed flowrate and
composition disturbances, maintaining product purity with reduced IAE
values. The findings confirm that feed-forward ratio controllers enhance
dynamic stability, making heat-integrated ED feasible for industrial
applications.

Cao et al. [99] evaluated the economic and control performance of
pressure-swing distillation (PSD) and ED for separating azeotropic sys-
tems in a varied-diameter column. The cascade control strategy (CS2)
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for PSD, incorporating temperature and composition controllers, suc-
cessfully maintained product purity (99.5 mol %) under +20 % distur-
bances, with settling times of 3 h. In contrast, ED required a more
complex control configuration (CS4) and struggled with +10 % distur-
bances, stabilizing after 4 h. The study highlights that PSD with VDC
outperforms ED in both control and economic feasibility, making it the
preferred option for industrial applications with variable conditions.

Wang et al. [100] optimized the control structure for separating the
ternary azeotropic mixture toluene-methanol-water via ED, comparing a
three-column system and a two-column system with a decanter. The
two-column process reduced TAC by 51.4 % while maintaining 99.9 mol
% methanol purity. An improved control structure (CS4), integrating a
proportional controller and an increased solvent flow rate, enhanced
disturbance rejection. Increasing solvent flow to 85 kmol/h ensured
stable operation, with only a 6.25 % increase in solvent use, demon-
strating a balance between efficiency and controllability in process
intensification.

Zhang et al. [101] designed and optimized control strategies for ED
in ethyl acetate-ethanol separation, evaluating conventional and
heat-integrated configurations. The B1-E configuration achieved 8.77 %
energy savings and 4.38 % lower operating costs. Dynamic analysis
identified single-end temperature control with a feed-forward strategy
(CS3) as the most effective in reducing transient deviations. For
heat-integrated systems, a bypass control scheme with dual-point tem-
perature control ensured operational robustness under disturbances.
These results emphasize that optimized control strategies are essential
for enhancing the efficiency of intensified separation processes.

Luyben [102] examined the impact of pressure on solvent-to-feed
(S/F) ratios and control performance in heat-integrated ED processes,
comparing 1 atm and 10 atm configurations. The higher-pressure system
reduced S/F ratio from 3.52 to 0.717, significantly cutting solvent
flowrate (387 kmol/h vs. 1900 kmol/h) and reboiler duty (14.0 MW to
10.9 MW). However, the dynamic analysis revealed that the conven-
tional reflux-to-distillate control strategy failed at 10 atm, causing os-
cillations and purity loss under feed composition variations. A modified
reflux-to-feed control strategy improved stability, while an adaptive
nonlinear solvent-to-feed controller successfully maintained methanol
purity (99.5 mol %) under large disturbances. These findings underscore
the importance of integrating advanced control strategies in
high-pressure and heat-integrated ED processes to ensure stability and
efficiency.

Jaime et al. [103] evaluated advanced control strategies for ethanol
dehydration via ED, comparing a conventional scheme (Strategy 1) with
a modified feedback-based control strategy (Strategy 2) regulating sol-
vent flow and recovery column dynamics. Dynamic simulations
confirmed that Strategy 2 achieved superior stabilization times (1-2 h
vs. 3-5 h in Strategy 1), effectively managing glycerol concentrations to
prevent hydraulic challenges linked to increased viscosity. Under feed
disturbances (80-84 mol % ethanol), temperature variations remained
within <0.5 °C, and ethanol purity deviations were limited to 0.4 mol %,
ensuring process stability and energy efficiency with a reboiler duty of
4281 kJ/s. These results underscore the effectiveness of dynamic control
structures in managing non-linear, multivariable ED systems.

Das Neves et al. [104] developed an Al-driven control system for ED
in anhydrous ethanol production, utilizing ANNs for real-time setpoint
adjustments. The two-ANN model significantly improved control accu-
racy, reducing ISE from 9.02 x 1078 to 2.4 x 1078, and achieved energy
savings of 0.90 % and 0.94 % for —20 % and +20 % feed flow distur-
bances, respectively. Compared to conventional feedback controllers,
ANN-based control minimized response times and enhanced disturbance
rejection, proving its feasibility as an efficient and adaptive alternative
for process intensification.

Pan et al. [105] integrated deep eutectic solvents (DES) and
advanced control strategies for energy-efficient ethanol dehydration via
ED. A multi-objective genetic algorithm optimized the system, reducing
reboiler duty by 55 kW through waste heat recovery. Comparing five
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control strategies, MPC outperformed P-I based schemes, reducing
destroyed exergy by 58.43 kW. A ratio control strategy, derived from
steady-state design simulations, enhanced feed composition disturbance
rejection, enabling predictive adjustments and minimizing transient
deviations. These findings highlight the role of model-based control in
improving process stability and sustainability in intensified separations.

Ma et al. [106] analyzed the dynamic controllability of a side-stream
ED process, focusing on response to feed disturbances. Conventional
control structures failed under +£10 % disturbances, necessitating an
advanced cascade control strategy for side-stream composition and
temperature regulation. While improving acetone purity stability, the
method struggled with methanol purity deviations. A refined
side-stream flowrate-to-feed flowrate ratio control achieved stable
product purities within 16 h for +10 % disturbances, but remained
ineffective for 20 % variations. The most effective strategy, integrating
a composition controller and side-stream throughput valve, achieved
stability within 8-12 h, handling +20 % feed rate fluctuations with
delayed stabilization. Despite prolonged transients compared to con-
ventional ED (1.5 h to steady state), the side-stream process improved
energy efficiency, demonstrating the trade-offs between intensification,
energy savings, and operational stability.

Ma et al. [107] reviewed dynamic control advancements in ED,
emphasizing the integration of control strategies with process intensi-
fication techniques. The study explored Extractive Dividing-Wall Col-
umns (EDWCs), achieving up to 11.6 % TAC reduction while enhancing
energy efficiency. Advanced control strategies, including fuzzy-PID
controllers, demonstrated improved robustness against feed distur-
bances, maintaining product purity with minimal deviations. The results
highlight the importance of coupling design and control methodologies
to optimize ED process stability and economic performance.

Yang et al. [108] optimized and controlled a Triple-Column Extrac-
tive Distillation (TCED) process for separating ethyl acetate, ethanol,
and water, achieving a 14.11 % TAC reduction and 15.23 % lower
exergy losses compared to conventional methods. Three control strate-
gies were tested: fixed reflux ratio (CS1), dual temperature control
(CS2), and feedforward-based control (CS3). CS3 exhibited superior
disturbance rejection, maintaining 99.9 mol % product purity under
+10 % feed variations, with stabilization times of ~3 h. These findings
highlight the effectiveness of integrated ED control strategies in
enhancing operability and sustainability.

Zhang et al. [109] examined thermally coupled ED systems for
separating THF, ethanol, and water, demonstrating higher energy effi-
ciency and process stability. The integration of feedforward reboiler
duty control and sensitive tray temperature adjustments minimized
transient deviations and steady-state offsets. The intensified process
achieved IAE values of 0.0012 under +20 % feed disturbances, signifi-
cantly outperforming conventional systems. These results underscore
the potential of thermally coupled ED for optimizing both economic and
control performance.

Aratijo Neto et al. [110] developed an intelligent control system
(ICS) for ED-based ethanol production, leveraging ANNs to dynamically
adjust setpoints. The soft sensor-based approach ensured seamless
transitions to new steady states within 1-2 h, avoiding manual in-
terventions and preventing overflow or emptying in reflux vessels.
Simulation results showed that the ICS optimized solvent-to-feed ratios,
reducing energy consumption while maintaining ethanol purity between
99.1 % and 99.9 %. These findings validate the feasibility of ANN-based
control in industrial ED applications.

Zhang et al. [111] assessed dynamic control in vapor
recompression-assisted ED, focusing on acetone-methanol separation.
Traditional temperature control strategies exhibited significant product
offsets under disturbances, prompting the development of a
dual-impurity control strategy, regulating solvent-to-feed and
reflux-to-distillate ratios. This optimized strategy reduced TAC by 20.53
% and energy consumption by 27.21 %, while vapor recompression cut
energy use by 62 % and CO: emissions by 55.92 %. These results
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highlight the necessity of plant-wide composition control for multivar-
iable, heat-integrated ED processes.

Zhang et al. [112] proposed a double side-stream ternary ED
configuration, achieving a 31.52 % TAC reduction while improving
dynamic control performance. The temperature-cascade control loops
effectively managed +20 % feed disturbances, restoring product com-
positions with minimal transient deviations. Partial heat integration and
adaptive solvent flow regulation further enhanced operational flexi-
bility, reducing TAC by 7.78 %-15.21 % in different case studies.
Despite these advantages, challenges related to plumbing arrangements
and control valve placements were noted, emphasizing the importance
of integrating control robustness in process intensification strategies.

Neves et al. [113] developed an ANN-based intelligent control sys-
tem for ED in anhydrous ethanol production, enhancing process stability
and efficiency under simultaneous feed disturbances and product spec-
ification changes. The ANN-based controller dynamically adjusted set-
points in response to ethanol purity variations, significantly
outperforming conventional P-I control. Steady-state errors were
reduced up to 35 times, and setpoint adjustments were completed within
2-4 h. Trained with 1000 datasets, the ANN model captured process
nonlinearities, ensuring robust disturbance rejection while maintaining
minimum energy consumption, demonstrating the feasibility of
Al-driven adaptive control in process intensification.

Liu et al. [114] optimized side-stream ED (SED) configurations for
separating pressure-sensitive azeotropes, achieving a 6.6 % reduction in
TAC and an 11.9 % decrease in CO2 emissions compared to conventional
designs. The SED1 configuration demonstrated superior operational
safety, confirmed by the lowest Process Route Index (PRI). To enhance
control performance, an MPC strategy was implemented, reducing IAE
under dynamic disturbances, ensuring precise composition control, and
outperforming P-I control in response time and robustness. These find-
ings highlight the advantages of integrated design-control methodolo-
gies in energy-efficient intensified systems.

Wang et al. [115] developed an optimized control structure for a
side-stream ED column used in methanol/toluene separation, achieving
a 17.57 % TAC reduction and a 13.56 % decrease in energy consump-
tion. Sensitivity analyses confirmed that optimizing entrainer concen-
tration improved operational performance. Single Composition Control
Structures (SCCS) outperformed Single Temperature Control Structures
(STCS) in maintaining product purity under dynamic disturbances,
demonstrating that composition-based control ensures greater process
stability and economic efficiency in intensified ED systems.

Wu and Chien [116] proposed a cost-effective control strategy for
hybrid reactive-extractive distillation (DCRED), eliminating composi-
tion analyzers by using temperature and temperature-difference (TD)
controllers. Their optimized control structure (CS3) exhibited superior
disturbance rejection, achieving IAE reductions from 63.6 to 8.45 for the
TBA/EtOH/H:0 system and from 1959 to 51.5 for the THF/EtOH/H20
system. The invariant TD control loops ensured stable product purity
even under +10 % feed disturbances, demonstrating scalability and
practicality for process intensification.

Torres Cantero et al. [117] evaluated four classical control structures
(L, D, LV, and DV) for an ED column using CaCl> as an entrainer in
bioethanol production. Temperature-based inferential control strategies
were tested via sensitivity analysis and SVD. Single-end structures (L and
D) showed lower energy consumption (2.23 kW) and minimal ethanol
purity deviations, while dual-end structures (LV and DV) exhibited
faster transient responses but increased energy consumption, with DV
requiring 200 % more reboiler duty. Error analysis confirmed L as the
most energy-efficient structure, demonstrating the effectiveness of
conventional control strategies in bioethanol dehydration.

Zhang et al. [118] integrated self-optimizing control into the design
phase of ED processes, enhancing both economic efficiency and opera-
tional stability. Their optimized two-column configuration for
acetonitrile-water separation achieved a 32 % TAC reduction, while a
multi-objective optimization framework minimized temperature drift,
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improving temperature stability by 38.7 % compared to conventional
setups. By reducing the number of control loops, the study demonstrated
simplified control structures with robust disturbance rejection, ensuring
smooth process transitions and dynamic controllability, reinforcing the
role of integrated design-control methodologies in PI.

Ge et al. [119] optimized ED for formic acid-water separation,
achieving a 27.01 % CO: emissions reduction and a 23.45 % TAC
decrease compared to conventional methods. Their study demonstrated
that MPC outperformed multi-loop P-I control, reducing overshoot, os-
cillations, and settling times by over 60 %. The optimized control
strategy ensured 98 % formic acid purity and 99 % water purity, high-
lighting the critical role of advanced control frameworks in enhancing
stability, efficiency, and sustainability in PI.

Neto et al. [120] investigated an intelligent control system based on
ANNs for Indirect-Extractive Distillation (IED) in the separation of
tetrahydrofuran, ethyl acetate, and water, a complex ternary azeotropic
mixture. Compared to conventional control, the ANN-based system
demonstrated superior performance in handling composition distur-
bances, significantly minimizing offsets from nominal product specifi-
cations. By automatically adjusting temperature profiles, the intelligent
control system outperformed conventional approaches in terms of the
IAE, ensuring enhanced dynamic stability with minimal human inter-
vention. These findings highlight the scalability and robustness of
ANN-based control for improving operational efficiency in intensified
distillation processes.

4.2.3. Dividing wall column (DWC)

This section provides an overview of research on the control of
DWGs, highlighting developments in process integration, operational
flexibility, and control structure design. The reviewed studies discuss
approaches to improve product purity, energy consumption, and system
robustness in intensified distillation processes.

Serra et al. [121] investigated advanced control strategies for DWCs,
focusing on MIMO control structures to enhance process intensification.
Their study optimized diagonal feedback and dynamic matrix control
(DMCo) approaches for ternary separations, identifying the po-S-B paired
control structure as the most robust, achieving a bandwidth frequency of
0.021 rad/min, a Morari resiliency index (MRI) of 0.65, and a condition
number (CN) of 4.6. While DMC showed potential, it struggled with
nonlinearity and slower convergence, requiring precise system identi-
fication. The research underscores the trade-off between energy opti-
mization and controllability, highlighting that tailored control
structures in DWCs are essential for operational stability and process
efficiency in intensified distillation systems.

Adrian et al. [122] advanced DWC control by implementing MPC,
demonstrating superior stability and disturbance rejection over con-
ventional P-I controllers. For feed flow disturbances, MPC reduced
temperature deviations from 6 to 8 K (PI) to 2-3 K and stabilization time
from 12 to 2 h. Similarly, for feed composition disturbances, MPC
limited deviations below 2 K and reduced stabilization time from over
10 h to 3 h. Experimental results from a miniplant-scale DWC confirmed
that MPC effectively handled the strong multidimensional interactions
inherent in DWCs, enabling operations closer to energy efficiency limits.
Despite requiring three times the tuning effort compared to PI, MPC
significantly improved dynamic performance and economic feasibility,
reinforcing its potential for process intensification control.

Van Diggelen et al. [123] evaluated advanced multivariable control
strategies for industrial DWCs, comparing PID controllers with
LQG/LQR, GMC, Hoo control, and p-synthesis. While PID controllers
maintained stability, they exhibited slow responses, with settling times
exceeding 1000 min in some configurations. LQG with integral action
reduced settling times to 510 min for feed disturbances, whereas
p-synthesis proved the most robust, stabilizing product purities within
569 min while maintaining steady-state errors <0.002 in product
composition. These results demonstrate that advanced multivariable
controllers provide superior stability and efficiency, achieving up to 40
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% energy savings and 30 % capital cost reductions, making them
essential for sustainable process intensification.

Kiss and Rewagad [124] optimized energy-efficient control for
benzene-toluene-xylene (BTX) separation in a DWC, evaluating
PID-based multi-loop strategies. The DB/LSV control structure exhibited
the best performance, with settling times under 7 h, compared to 14+ h
for LV/DSB. By introducing liquid split ratio (rL) optimization, they
minimized energy requirements while maintaining 97 % product purity,
achieving 40 % energy savings and 30 % lower capital costs. RGA
analysis confirmed that DB/LSV had minimal process interactions,
ensuring robust performance under +10 % disturbances. This study
underscores that tailored control strategies are critical for maximizing
efficiency and stability in DWCs, reinforcing their role in process
intensification.

Kiss and Bildea [125] examined control challenges in DWCs,
demonstrating that MPC outperforms multi-loop PID controllers for
ternary  separations such as  benzene-toluene-xylene  and
pentane-hexane-heptane. MPC achieved shorter settling times and
enhanced disturbance rejection, maintaining 97 % product purities
while reducing energy consumption. In the benzene-toluene-xylene
case, MPC minimized overshooting and handled 10 % feed composi-
tion variations more effectively than PID-based approaches. These
findings emphasize the importance of advanced control strategies in
overcoming the operational complexities of DWCs, ensuring sustain-
ability and process efficiency in industrial process intensification.

Rewagad and Kiss [126] advanced dynamic optimization and control
strategies for DWCs, emphasizing the superiority of MPC over conven-
tional PID-based frameworks. Using benzene-toluene-xylene (BTX)
separation, they demonstrated that MPC effectively handled feed flow
(+10 %) and composition disturbances, maintaining 97 % product pu-
rities while optimizing energy use through liquid split manipulation.
The IAE was consistently lower for MPC, highlighting faster disturbance
rejection and stability. Additionally, hybrid MPC-PID control enhanced
robustness and practical implementation, reinforcing MPC’s potential
for non-linear, high-degree-of-freedom systems like DWCs.

Tututi-Avila et al. [127] evaluated the dynamic controllability of an
EDWC for ethanol dehydration, demonstrating a 13 % reduction in
heating duties, 19 % lower cooling requirements, and 12.4 % TAC
savings compared to conventional ED. Comparing fixed vs. adjustable
vapor split control structures, they found that an adjustable vapor split
significantly improved disturbance rejection and ethanol purity (>99.5
wt. %). Dynamic simulations confirmed that adjustable vapor splits
enhanced system stability and response times, validating EDWC as a
viable intensified alternative for large-scale industrial applications.

Blevins et al. [128] implemented MPC in a pilot-scale DWC,
demonstrating superior process control over PID controllers. MPC
optimized temperature control, reducing variability to 0.5°F, and
improved side-product purity from 0.8 to 0.9 mol fraction. Wire-
lessHART transmitters and PIDPlus algorithms stabilized wireless con-
trol updates every 8 s, ensuring robust operation even under a 10 % feed
reduction. These findings highlight MPC’s transformative role in
energy-efficient, high-performance DWC operations, setting a bench-
mark for process intensification.

Acosta-Solorzano et al. [129] analyzed bio-jet fuel and green diesel
distillation sequences, comparing conventional (CDS, CIS) and ther-
mally coupled (TCDS, TCIS, DWC) configurations. While TCDS achieved
the lowest energy use (~11 % savings), TCIS and DWC exhibited su-
perior controllability, as indicated by lower IAE values. The TCIS
structure balanced energy efficiency and dynamic stability, out-
performing high-energy conventional designs. Control strategies such as
PI tuning and relative gain array analysis were critical in ensuring
operational stability while maximizing energy efficiency in biofuel
separations.

Donahue et al. [130] provided an in-depth DWC control analysis,
highlighting MPC as the most effective strategy over multi-loop PID and
temperature-based control. Case studies from BASF (100+ DWCs) and
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ExxonMobil showcased 30-50 % energy savings, but control challenges,
particularly with liquid and vapor splits, could double energy con-
sumption if misconfigured. Pilot-scale studies confirmed that MPC
minimized offset and improved response times under feed composition
variations, emphasizing the need for an integrated control framework to
optimize DWC performance for industrial applications.

Qian et al. [131] analyzed stabilizing control structures for a
three-product DWC, evaluating fixed liquid split (CS1), active liquid
split (CS2), and active vapor split (CS3) strategies under +20 % dis-
turbances in feed composition and flow rate. While CS1 demonstrated
robustness in handling feed disturbances, CS2 and CS3 exhibited better
disturbance rejection, particularly in stabilizing prefractionator tem-
peratures. CS3 struggled with light component disturbances, whereas
CS2 effectively managed variations through liquid split manipulation.
The optimized DWC achieved 99 % purity in ethanol (distillate),
n-propanol (side product), and n-butanol (bottom product), operating at
1 kmol/h feed flow and 30.86 kW reboiler duty. The study highlights
that a DWC can be controlled using only three temperature controllers,
eliminating the need for direct composition control, and offering a
simpler and more cost-effective industrial implementation.

Tututi-Avila et al. [132] evaluated advanced control strategies for
DWGs in BTX separation, comparing satellite, Kaibel, and conventional
distillation sequences. Their study demonstrated that the satellite col-
umn achieved a 24.5 % energy reduction over the conventional
sequence and an 11.8 % improvement over the Kaibel column, while
maintaining stable dynamic responses. Composition controllers and
liquid split manipulation were implemented, proving superior distur-
bance rejection for feed composition variations, with product purities
recovering within six hours. The satellite column exhibited resilience to
vapor split variations, stabilizing in five hours versus ten hours for the
Kaibel column. These results validate DWCs as an energy-efficient and
controllable alternative for petrochemical separations.

Sanchez-Ramirez et al. [133] performed a comprehensive control
analysis of ten hybrid distillation designs for biobutanol separation,
comparing conventional, thermally coupled, and intensified configura-
tions. Using SVD and P-I controllers, they found that intensified designs
exhibited superior control properties, with Design E achieving the best
minimum singular value and lowest IAE for acetone control, while
Design D excelled in butanol control. Intensified designs showed higher
thermal coupling flow rates (118.62 kg/h liquid, 104.58 kg/h vapor in
Design E), correlating with improved dynamic behavior and energy ef-
ficiency. These findings highlight the critical role of process intensifi-
cation in achieving both lower energy consumption and enhanced
control performance in biobutanol production.

Rodriguez et al. [134] explored control strategies for extractive and
reactive DWCs, demonstrating that MPC outperformed decentralized
control by reducing oscillations and effectively handling feed variations
up to 5 %. Case studies included an extractive DWC for bioethanol
dehydration and a reactive DWC for methyl acetate hydrolysis, where
MPC stabilized ethanol and water compositions despite 2.5 % feed dis-
turbances. The reactive DWC achieved stable methanol and acetic acid
production with constrained dynamic adjustments (prediction horizon:
40 min, control horizon: 4 steps). These results confirm that MPC
significantly enhances operational stability and efficiency in intensified
separation processes.

Weinfeld et al. [135] provided a comprehensive review of RDWC
advancements, emphasizing their potential for 25-40 % energy savings
and 30 % lower capital costs. While major players like BASF operate
over 70 DWGCs, industrial adoption remains challenging due to complex
control requirements and vapor-liquid equilibrium uncertainties. MPC
and P-I control strategies have shown promising stability despite feed
disturbances, and experimental validation confirms RDWC feasibility,
with methyl acetate hydrolysis achieving 82.2 % conversion and ethyl
acetate/methyl oleate separation reaching 92.1 wt % methanol purity.
The study underscores RDWCs’ transformative potential, bridging
experimental progress and computational optimization toward
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large-scale commercial viability.

Keil [136] provides a review of process intensification control,
emphasizing innovations that enhance efficiency and sustainability.
Heat-integrated distillation columns (HIDiC) reduce energy consump-
tion by up to 50 %, while DWCs achieve 30 % energy savings by
consolidating multi-step separations into a single unit. Microreactors
improve heat and mass transfer rates, reducing reaction times by 90 %,
and static mixers optimize continuous flow processes, lowering energy
use by 40 %. The integration of multi-objective optimization frame-
works in modular designs further enhances operational efficiency by
balancing economic performance with environmental sustainability.
This study underscores the critical role of intensified process control in
optimizing chemical operations, reducing energy demand, and
improving dynamic stability.

Wang et al. [137] developed an advanced sliding mode control
(SMC) strategy for DWCs, optimizing process performance through
response surface methodology (RSM) and particle swarm optimization
(PSO). The study achieved 6.15 % energy savings compared to con-
ventional single-factor optimization and demonstrated SMC’s superior-
ity over PID controllers, reducing settling time from 3.3 to 1.1 s for C5
composition tracking, with 12 times better performance under certain
conditions. The SMC effectively managed nonlinear interactions and
time delays, ensuring stable operation under feed disturbances and
composition variations, positioning it as a robust control solution for
highly integrated separation processes.

Lukac et al. [138] investigated the controllability of a four-product
DWC with a 2-3-3 configuration, demonstrating its steady-state effi-
ciency but highlighting dynamic challenges due to strong control loop
interactions. Temperature-driven PID control struggled to maintain
product specifications under feed disturbances, with IAE values reaching
13.2 and settling times ranging from 83 to 210 min. The study suggests
that active vapor-split manipulation or advanced control schemes are
necessary to improve dynamic stability and enable sustainable industrial
adoption of this intensified design.

Zhang et al. [139] introduced advanced control strategies for
liquid-only transfer Kaibel DWCs (LTS-KDWC) in a four-component
alcohol separation process, comparing composition control (CS1), tem-
perature control (CS2), and temperature difference control (CS3) under
+15 % feed disturbances. CS3 outperformed other methods, maintain-
ing 99 mol % purity across all streams while minimizing steady-state
errors, demonstrating superior robustness and adaptability for
industrial-scale implementation. These results underscore the impor-
tance of tailored control strategies in achieving high efficiency and
operational stability in intensified separation processes.

Zhang et al. [140] proposed an LSTM-based MPC framework for an
EDWC, addressing its nonlinear dynamics, multi-input multi-output
nature, and time delays. The LSTM-MPC model was trained on extensive
time-series data, ensuring high prediction accuracy with minimal mean
squared error (MSE). Using multi-objective particle swarm optimization
(MOPSO), the study determined optimal steady-state conditions, and
three temperature inferential control (TIC) schemes were evaluated to
identify the best input features for LSTM-MPC. Dynamic simulations
tested the controller’s performance under industrial disturbances,
demonstrating superior closed-loop controllability, reduced offsets,
negligible oscillations, and shorter transition times compared to con-
ventional TIC strategies. These results highlight LSTM-MPC’s potential
for enhancing the stability and operational efficiency of EDWC, offering
a more robust alternative for managing complex intensified separation
processes.

Wang et al. [141] investigated the dynamic control of a liquid-only
transfer extractive dividing-wall column (LTS-EDWC), optimizing its
design and control performance for isopropanol-water-dimethyl sulf-
oxide separation. The study first applies a multi-objective genetic al-
gorithm to minimize total stage number and reboiler duty, followed by
the development of three control structures. The basic control structure
(CS1) stabilizes the system under +10 % disturbances but fails to reach



C. Ramirez-Marquez et al.

steady-state within 10 h. An improved control structure (CS2) achieves
faster recovery under +20 % disturbances, maintaining product purity
more effectively. To further enhance control performance, an adaptive
neuro-fuzzy inference system (ANFIS)-PID controller (CS3) is intro-
duced, reducing the time to steady-state by 8.6 % compared to CS2.
However, CS2 proves to be more universally applicable across different
extractive distillation systems, such as n-heptane-toluene-aniline and
acetone-methanol-water, where it successfully restores product purity
within 10 h under +20 % feed disturbances. These findings emphasize
the potential of LTS-EDWC with optimized control strategies for
achieving stable and efficient operation in intensified separation
processes.

4.2.4. Hybrid and membrane-based process control

This section examines recent works on the control of hybrid and
membrane-based separation processes, addressing challenges related to
process dynamics, mass transfer limitations, and system nonlinearity.
The reviewed articles explore control strategies aimed at enhancing
performance, stability, and energy efficiency in these integrated sepa-
ration systems.

Iglesias et al. [142] presented a critical review of the integration of
membrane technologies and photocatalysis for process intensification,
focusing on advanced control strategies in photocatalytic membrane
reactors (PMRs) and photocatalysis-membrane filtration (PMF) systems.
These technologies enable simultaneous reaction and separation,
enhancing energy efficiency and operational reliability in applications
such as wastewater treatment and hydrogen production. Control in-
novations include UV irradiation optimization, tailored membrane
coatings, and reactor geometry refinements to synergize reaction ki-
netics with membrane separation. Quantitative results demonstrate over
80 % total organic carbon (TOC) removal efficiency in wastewater ap-
plications, while PMRs for hydrogen production achieve H- generation
rates of up to 1000 umol/g-h using Z-scheme configurations with Nafion
membranes, surpassing conventional photocatalytic systems. These ad-
vancements address catalyst recovery, fouling, and mass transfer limi-
tations, positioning PMRs as a key technology for process intensification,
with ongoing challenges in scalability and long-term stability.

Jiang et al. [143] examined process control advancements in mem-
brane crystallization (MCr), emphasizing precision in nucleation and
growth regulation through novel membrane designs. The study high-
lights dynamic process control integration, optimizing interfacial mass
transfer rates (0.66 mg/cm?/s) to achieve narrow crystal size distribu-
tion (CSD) and uniform morphology. Energy efficiency improvements of
20 %—30 % compared to conventional crystallization methods are
demonstrated, with high packing density membranes (238 m?/m?)
enhancing production efficiency and supersaturation control at nano-
meter precision. Case studies include pharmaceutical crystallization,
where hollow fiber membranes regulate supersaturation, and hypersa-
line water treatment, achieving up to 84 % freshwater recovery and 2.72
kg/m?/day salt production. These findings underscore MCr’s potential
for sustainable crystallization, integrating advanced process control for
optimized energy and material efficiency.

4.2.5. Catalytic reactive systems

This section reviews key contributions in the control of catalytic
reactive systems, focusing on strategies to optimize reaction perfor-
mance, improve selectivity, and manage thermal effects. The discussion
includes advanced control methodologies that address the complexities
of reaction kinetics and multiphase interactions in catalytic processes.

Dautzenberg and Mukherjee [144] explored multifunctional reactors
as an advanced PI strategy, integrating reaction and transport phe-
nomena to enhance efficiency and sustainability. The study categorizes
Pl into four types: enhanced catalyst functionality (Type A), inter-phase
transport intensification (Type B), intra-reactor process integration
(Type C), and solid recirculation systems (Type D), demonstrating their
role in improving heat and mass transfer, reducing energy consumption,
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and minimizing by-products. Control strategies for these intensified
systems remain a critical challenge, particularly in fluid catalytic
cracking (FCC), where catalyst regeneration must be dynamically
adjusted to prevent thermal instability, and catalytic distillation, where
reaction and separation processes occur simultaneously. Quantitatively,
FCC achieves over 75 % energy recovery, while catalytic distillation
improves selectivity by 20-30 %. Recent innovations include micro-
reactors, which leverage high heat transfer coefficients to enable
ultra-fast reaction kinetics, and micro-engineered catalyst (MEC) sys-
tems, which optimize mass transfer while minimizing pressure drops.
These findings underscore the necessity of adaptive control strategies to
manage nonlinear dynamics and process interactions, ensuring opera-
tional stability and enhanced efficiency in PI applications.

De Toledo et al. [145] investigated process intensification control in
bulk polymerization using an autorefrigerated continuous stirred-tank
reactor (CSTR) with a semi-flooded horizontal condenser. The study
addresses the challenge of non-condensable gas accumulation, which
disrupts condenser pressure, reactor temperature, and heat exchange
efficiency, leading to process instability. To counteract these issues, the
authors propose an advanced control strategy incorporating periodic gas
purging and compare P-I, QGPC-SQP, and adaptive STQGPC controllers.
Quantitative results reveal that P-I control fails to stabilize the system,
with oscillations exceeding +5 K, while QGPC and STQGPC reduce de-
viations to within +0.5 K, maintaining stable operation. Under a —10 %
step perturbation in feed temperature, P-I control fails to restore sta-
bility, whereas predictive controllers recover steady-state conditions
within 5000 s. These results highlight the necessity of advanced pre-
dictive control methodologies to optimize efficiency, ensure reliability,
and enhance process safety in intensified polymerization systems.

Appel and Wachsen [146] developed an MPC framework for het-
erogeneously catalyzed gas-phase reactions, integrating a detailed ki-
netic model with statistical correlations from six years of industrial data.
Their hybrid modeling approach, combining deterministic and statisti-
cal elements, optimizes reactor selectivity and stability, leading to 2 %
selectivity improvements at the reactor exit under all operational con-
ditions. The system incorporates real-time process optimization, auto-
mated data handling, and parallel simulations for scenario prediction,
reducing material and energy costs while enhancing plant efficiency.
Compared to traditional controllers, MPC enables more precise dosing
adjustments and proactive decision-making, significantly improving
reactor stability and operational robustness. These findings confirm that
hybrid kinetic-statistical models, when integrated into MPC frame-
works, provide scalable solutions for process intensification, particularly
in selectivity optimization and long-term reactor stability.

Becht et al. [147] investigated microstructured catalytic wall re-
actors (MSRs) as a transformative process intensification strategy for
highly exothermic gas-phase reactions, focusing on phthalic anhydride
(PA) production from o-xylene. The study introduces a "booster concept,
" where MSRs handle 63 % of the total heat release within 20 % of the
reactor volume, improving heat and mass transfer and process safety.
Economic analysis indicates a potential 12 % reduction in production
costs, with overall efficiencies 180 % higher than conventional reactors.
Despite challenges in operational reliability and scale-up, the study es-
tablishes MSRs as a pioneering intensification strategy, offering signif-
icant energy savings, enhanced reaction control, and improved
selectivity in chemical manufacturing.

Bahroun et al. [148] developed an advanced hierarchical control
structure for high-pressure catalytic slurry reactors, specifically
RAPTOR® for o-cresol hydrogenation. The system operates at 300 °C
and 250 bar, requiring a Lyapunov-based controller with thermody-
namic stability constraints to optimize conversions (98 %) while
rejecting disturbances such as +30 % inlet gas flow variations. The
control strategy stabilizes outlet temperatures and ensures operational
safety, demonstrating robust disturbance rejection and energy effi-
ciency.  These results emphasize the importance  of
thermodynamic-based control in maintaining process stability and
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optimizing efficiency in highly intensified reactors.

Ghiasy et al. [149] addressed pH control challenges in spinning disc
reactors (SDRs), employing nonlinear compensation techniques such as
pH characterizers and disturbance observers (DOs). While P-I control
achieves an IAE of 10, it exhibits unacceptable overshoots (~40 %).
Nonlinear compensation strategies eliminate limit cycles but at the cost
of slower response times, whereas DOs enhance disturbance rejection. A
case study on hydrochloric acid neutralization with sodium hydroxide
highlights the fast dynamics of SDRs, where reduced size and enhanced
mixing necessitate precise control strategies. These findings underscore
the trade-off between responsiveness and stability in intensified chem-
ical systems.

Li and Li [150] investigated neural network-based nonlinear MPC
(NMPC) for three-phase catalytic slurry hydrogenation reactors, which
operate under extreme conditions (300 °C, 250 bar). Two NMPC ap-
proaches are compared: SQP-based NMPC (NMPC-NO) and local line-
arization NMPC (NMPC-NPL). Results show that NMPC-NO achieves
superior tracking accuracy (IAE = 9.14, ISE = 3.22) but higher
computational costs, whereas NMPC-NPL reduces computation time by
over 50 % while maintaining similar accuracy. Compared to linear MPC,
NMPC exhibits better robustness under nonlinearities, highlighting its
potential in optimizing control for highly intensified reactors.

Li and Li [151] extended their work by developing an MPC strategy
for intensified continuous reactors, integrating a neural network-based
Wiener model. Their hybrid approach simplifies NMPC into a compu-
tationally efficient linear MPC (LMPC), applied to hydrogenation of
o-cresol at 200 bar and 300 °C. NMPC outperforms LMPC in setpoint
tracking (IAE = 5.84 vs. 6.63) under heat transfer variations, while
LMPC slightly outperforms NMPC under mass transfer variations. These
findings highlight the potential of NMPC in controlling intensified re-
actors, though online adaptation of neural network parameters is sug-
gested to further improve robustness.

Kahm and Vassiliadis [152] introduced a stability criterion (K) for
exothermic batch processes, embedding it into nonlinear MPC to prevent
thermal runaways. By incorporating divergence-based stability con-
straints, their control scheme reduces reaction times by at least 50 %
while ensuring stable operations at temperatures up to 450 K. Case
studies show that stability-integrated MPC achieves optimized yields
with reduced computational costs, cutting iteration times by up to 50 %.
The approach is validated across multi-component reaction systems,
where it predicts stability transitions with a 5 K margin before instability
onset, enabling safe and efficient process intensification.

Jia et al. [153] explored process intensification control in cooling
crystallization, integrating ultrasound, supersaturation control (SSC),
and temperature cycling (TC) to optimize crystal morphology. Their
combined approach achieves a 63.63 % increase in bulk density, L/D
ratio reduction from 14 to 7, and uniform particle size distribution.
Ultrasound enhances nucleation, SSC maintains steady growth, and TC
eliminates fine crystals, collectively improving efficiency and sustain-
ability in industrial crystallization. These findings highlight the critical
role of process control in achieving intensified crystallization processes.

4.2.6. Advanced control and optimization in process intensification

This section summarizes recent advances in control and optimization
strategies for process intensification, with a focus on model predictive
control, data-driven approaches, and real-time optimization techniques.
The reviewed studies highlight methods to enhance operational effi-
ciency, system responsiveness, and energy savings in intensified process
systems.

Wang et al. [154] highlighted the quantitative benefits of PI in solid
handling systems, including energy efficiency improvements of up to
30-40 %, process throughput enhancements of up to twofold, and
operational cost reductions of approximately 20 %. These gains are
achieved through enhanced mass and heat transfer rates, reduced pro-
cess footprints, and shorter process times. The review emphasizes the
critical role of advanced control strategies, such as MPC, in managing
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the fast dynamics, sensitivity, and increased complexity of PI systems,
with control performance metrics showing up to 50 % faster response
times and improved process stability under dynamic conditions. These
findings underscore the economic and operational advantages of PI
when integrated with adaptive and real-time monitoring control
systems.

Tian et al. [155] emphasized the quantitative integration of control
systems within the design framework for process intensification. Uti-
lizing multi-parametric model predictive control (mp-MPC), the study
achieves optimal control strategies through dynamic optimization. Key
outcomes include a closed-loop validation that maintains MTBE purity
at 98 % under operational disturbances and uncertainties. Additionally,
dynamic performance metrics such as Risk Ratios—0.91 for Operable
Design 1 and 0.81 for Operable Design 2—highlight the role of control in
reducing process risks. This approach ensures robust, economically
optimized operations while enhancing flexibility and safety within
intensified systems. The framework demonstrates the critical role of
quantitative control analysis in achieving verifiable and operable de-
signs in modern chemical engineering processes.

Lopez-Guajardo et al. [156] highlighted that recent advancements in
Process Intensification 4.0 emphasize the integration of ML to enhance
process control strategies, particularly through predictive and adaptive
control systems. ML models, such as neural networks and hybrid
physical-data approaches, enable real-time optimization of dynamic,
non-linear processes, improving energy efficiency by up to 30 % and
operational efficiency to exceed 95 %. The use of advanced sensors for
real-time data collection further supports multi-parameter predictive
control frameworks, facilitating robust performance under variable
conditions. These innovations contribute to sustainable and circular
processes by reducing waste and enhancing material recycling efficiency
by 40 %, demonstrating the transformative potential of data-driven
control in achieving resource-efficient operations.

Mokrova et al. [157] developed an approach for the intensification of
automated control systems applied to industrial and transportation
processes, achieving measurable improvements in efficiency and sus-
tainability. In the production of activated carbon, they designed a con-
trol system for the drying and carbonization stages that utilizes recycled
carbonization gases as a drying agent, resulting in a 25 % reduction in
energy and operational costs. Additionally, they implemented an acti-
vation module with parallel-arranged furnaces and a centralized control
system, optimizing performance and extending equipment lifespan by
20 %. In transportation systems, they applied predictive and dynamic
models, including Mamdani systems, to manage urban traffic and reduce
energy consumption in tunnel lighting by an average of 30 %. These
advancements, based on hierarchical and decomposition principles, in-
tegrated hierarchical optimization methods and dynamic analysis to
maximize operational and energy efficiency, demonstrating the appli-
cability of their methodology across various industrial sectors with
concrete results in energy savings and product quality enhancement.

These advancements are further supported by recent interdisci-
plinary developments that underscore the growing impact of Al and
data-driven control across a wide range of complex industrial systems.
For instance, the Al Institute in Dynamic Systems has proposed a com-
mon task framework for developing interpretable and physics-
constrained models through optimal sensor placement and the integra-
tion of data acquisition, modeling, and control. Wang et al. [158]
introduced a differential geometry-reinforced learning framework
(DGRL) that combines mechanistic and data-driven models, demon-
strating superior control performance in highly nonlinear environments
such as active suspension systems. Similarly, Mattera et al. [159]
developed a reinforcement learning approach tailored to industrial
manufacturing, including sim-to-real deployment in wire arc additive
processes. Noriega and Pourrahimian [160] highlighted how Al and data
analytics are transforming strategic mine planning through techniques
like genetic algorithms and discrete simulations. Vake et al. [161]
emphasized the role of open-source large language models in building
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trustworthy and transparent Al systems with industrial applicability.
Ghahramani et al. [162] proposed a smart manufacturing framework
that leverages neural networks and evolutionary computing for intelli-
gent automation in semiconductor production. In addition, Kutz et al.
[163] contributed to the theoretical foundation of physics-informed
machine learning by focusing on sparse regression, nonlinear dy-
namics identification, and interpretable model discovery. Although
these studies are not limited to process intensification, they represent
critical advances in Al-enabled control and offer transferable method-
ologies that can be adapted to the design and operation of intensified
process systems.

To further ground these advancements, it is essential to move beyond
performance metrics and examine the mechanistic foundations of con-
trol behavior in intensified systems. In particular, the nonlinear coupling
between transport and reaction phenomena in RD and DWC units in-
troduces stiff differential-algebraic equations (DAEs) that challenge
traditional linear control assumptions. This has prompted the adoption
of differential flatness and model order reduction (MOR) methods to
derive tractable control-oriented models capable of preserving key
physical dynamics while reducing computational burden [164].

In hybrid control architectures, mechanistic modeling plays a pivotal
role when integrating soft sensors or Al modules. For example, observer-
based estimation schemes grounded in reaction kinetics and mass
transfer models can provide real-time inferential data to machine
learning components, enhancing accuracy and stability. These hybrid
estimators enable real-time reconciliation between empirical data and
physical constraints, ensuring that Al models operate within feasible
process envelopes and preserving thermodynamic consistency.

Furthermore, recent developments in Lyapunov-based stability
analysis and passivity theory have been applied to validate control laws
for intensified processes under uncertainty [165]. In NMPC frameworks,
control Lyapunov functions are now routinely used to certify closed-loop
stability, even in the presence of large input delays or non-minimum
phase behaviors. These theoretical guarantees are particularly critical
for self-optimizing control systems operating near safety-critical
boundaries, such as in reactive crystallization or pressure-swing
systems.

4.3. Statistical analysis of control advancements (2000-2025)

A statistical evaluation was conducted to identify trends in process
intensification control, revealing significant shifts in control strategies
over the past 25 years. Fig. 1 illustrates the evolution of these tech-
niques, highlighting the decline of traditional methods and the
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increasing adoption of advanced control approaches.

One of the most notable trends is the decline in the usage of PID
control. In the year 2000, PID controllers were employed in approxi-
mately 80 % of process intensification applications. However, their
prevalence has significantly decreased over time, dropping to below 25
% by 2025. This decline can be attributed to the limitations of PID
controllers in handling complex, nonlinear, and highly dynamic sys-
tems, which are characteristic of intensified processes. As a result, more
advanced strategies, such as MPC and Al-based techniques, have gained
prominence.

The adoption of MPC and NMPC has shown a steady rise, increasing
from just 20 % in 2000 to approximately 45 % in 2025. These techniques
have been particularly beneficial in applications such as RD, ED, and
DW(Cs, where dynamic optimization and predictive capabilities provide
substantial performance improvements. The ability of MPC and NMPC
to handle multivariable interactions and constraints makes them
particularly well-suited for complex intensified processes.

Al-based control strategies, including ANN and soft sensors, have
emerged as a viable alternative in recent years. These techniques began
gaining traction around 2015 and have since grown to account for
approximately 20 % of the control strategies employed in 2025. Al-
based control methods offer enhanced real-time adaptability, robust-
ness against uncertainties, and improved predictive capabilities, which
are essential for modern process intensification applications. By
leveraging machine learning algorithms, these methods can optimize
control actions dynamically, ensuring more stable and efficient process
operations.

Another key trend is the rise of hybrid control strategies, which
integrate model-based approaches with Al techniques. The adoption of
hybrid control has expanded significantly, from just 5 % in 2010 to 25 %
in 2025. This approach combines the advantages of traditional model-
driven strategies, such as MPC, with the learning capabilities and
adaptability of Al-based systems. Hybrid control frameworks enable
better handling of nonlinearities, disturbances, and uncertainties,
making them an attractive solution for next-generation process
intensification.

Overall, these trends indicate a transformative shift in process con-
trol methodologies, moving away from conventional PID controllers
towards more intelligent, adaptive, and predictive approaches. The
increasing reliance on MPC, NMPC, Al-based control, and hybrid stra-
tegies reflects the growing complexity of process intensification and the
need for more sophisticated control solutions to ensure efficiency, sta-
bility, and sustainability in industrial applications.

Fig. 2 provides a multidimensional representation of the evolution of
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Fig. 1. Evolution of control strategies in process intensification: transition from traditional to advanced approaches.
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Fig. 2. Visual mapping of technological shifts in control strategies for process
intensification (2000-2025).

control strategies in process intensification between 2000 and 2025. The
matrix captures the relative intensity and timing of adoption across four
major control paradigms: PID, MPC/NMPC, Al-based, and hybrid sys-
tems. The size of each colored circle is proportional to the relative
prevalence reported in the literature for each time interval, allowing for
a visual comparison of both temporal trends and the co-existence of
multiple strategies. This format offers a complementary perspective to
statistical plots by explicitly illustrating the overlapping implementation
of different techniques during transitional periods in the field.

Color coding is used to distinguish the primary control approaches:
red for PID controllers, blue for MPC and NMPC techniques, green for Al-
based strategies including neural networks and reinforcement learning,
and yellow for hybrid control frameworks that combine model-based
and data-driven methodologies. The diagram emphasizes the dimin-
ishing dominance of PID as more advanced methods gained traction,
particularly in systems with strong nonlinearities and real-time opti-
mization requirements. The visual clustering of Al and hybrid methods
after 2015 reflects the growing accessibility of computational resources
and the integration of machine learning into industrial automation.
Together with the quantitative data of Fig. 1, this figure reinforces the
observed shift toward intelligent, predictive, and sustainable control
architectures in intensified process systems.

4.4. Impact on efficiency and sustainability

The impact of advanced control strategies on efficiency and sus-
tainability in process intensification has been widely studied, revealing
significant improvements in energy consumption, economic perfor-
mance, and operational stability. Across multiple reviewed studies, the
implementation of intensified process control strategies has led to sub-
stantial energy savings, with reductions ranging from 15 % to 40 %.
These savings are primarily achieved through optimized process dy-
namics, enhanced heat integration, and improved system responsive-
ness, which collectively contribute to lower energy consumption and
reduced carbon footprints in industrial applications.

From an economic perspective, the adoption of modern control
techniques has translated into notable reductions in TAC. Depending on
the control strategy employed and the specific process type, cost re-
ductions have been reported in the range of 12 % to 30 %. MPC, NMPC,
and Al-driven approaches contribute to these savings by optimizing
resource utilization, minimizing waste, and enhancing process effi-
ciency. The ability to dynamically adjust operational parameters in real
time allows these strategies to maintain optimal performance, thereby
reducing operating costs and improving overall profitability.

In addition to economic and energy benefits, intensified control
strategies have significantly improved operational stability. Advanced
control methods, particularly NMPC and Al-driven controllers, have
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demonstrated superior disturbance rejection capabilities, reducing the
impact of process variations and external disruptions. These approaches
have also been shown to decrease stabilization times, enabling processes
to recover more rapidly from perturbations and maintain steady-state
operation more effectively. The integration of predictive and adaptive
control techniques ensures a more robust and resilient process, ulti-
mately leading to higher efficiency and sustainability in industrial
applications.

5. Sustainability and process intensification control

The integration of sustainability into PI requires a fundamental shift
in how control systems are conceived and implemented. Traditional
methods that prioritize operational efficiency and product yield must
evolve to address the broader environmental and social impacts of in-
dustrial processes. By embedding sustainability metrics into control
frameworks, PI can transcend conventional optimization paradigms and
become a cornerstone of green manufacturing.

A key principle of green engineering is the integration of process
monitoring and control to enhance efficiency and sustainability in
chemical manufacturing. As highlighted by Jiménez-Gonzdlez &
Constable [166], effective control strategies, such as real-time optimi-
zation and advanced regulatory control, contribute to minimizing waste,
reducing energy consumption, and improving resource utilization. By
ensuring stable operation within optimal conditions, control systems
prevent deviations that could lead to increased emissions or in-
efficiencies. This aligns with the broader objectives of green chemistry
and engineering, demonstrating that well-designed control strategies are
not merely operational necessities but fundamental components in the
transition toward more sustainable industrial practices.

Achieving this transformation starts with real-time monitoring sys-
tems capable of assessing the environmental footprint of every opera-
tional decision. Advances in digital twins and life cycle assessment (LCA)
algorithms have enabled process engineers to evaluate metrics like
greenhouse gas emissions, water usage, and material efficiency
dynamically. For instance, incorporating LCA feedback loops into MPC
systems allows for decision-making that minimizes environmental im-
pacts without compromising performance.

A key enabler of sustainable PI is the use of adaptive control stra-
tegies to accommodate renewable energy sources. The variability
inherent in solar and wind energy often disrupts the stability of tradi-
tional processes. However, Al-driven controllers equipped with rein-
forcement learning capabilities can adapt process conditions in real
time, ensuring seamless integration of renewable energy inputs. Such
systems have been shown to enhance the efficiency of energy-intensive
operations, including separations and catalytic reactions, by dynami-
cally optimizing energy use based on availability.

Decentralized control architectures represent another leap forward
for sustainability in PI. These systems distribute computational and
decision-making power across modular units, reducing vulnerabilities
associated with centralized systems. Decentralization also facilitates
localized optimization, where individual modules adjust their opera-
tions to achieve global sustainability goals. Recent advancements in self-
healing control systems, leveraging distributed ledger technologies and
Al, further enhance resilience by enabling processes to detect and
recover from faults autonomously.

The future of PI control may also hinge on the application of quan-
tum computing. With its unparalleled computational power, quantum
algorithms offer the potential to solve complex optimization problems
that are currently beyond the reach of classical computing. This capa-
bility is particularly relevant for PI systems, where the interplay of
multiple variables in nonlinear processes demands high-speed, high-
accuracy solutions. Quantum-enabled control could revolutionize areas
such as energy recovery, waste minimization, and material efficiency.

To fully realize the potential of sustainability in PI, interdisciplinary
collaboration is essential. Material scientists, data engineers, and
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process designers must work together to create systems that are not only
efficient but also aligned with global sustainability goals. By integrating
circular economy principles, leveraging Al and quantum computing, and
embracing decentralized architectures, PI can pave the way for a future
where industrial processes are both economically and environmentally
sustainable.

An emerging direction in sustainable PI control involves integrating
supervisory control layers specifically designed to monitor environ-
mental performance metrics. These higher-level systems operate over
standard real-time controllers, continuously tracking indicators such as
resource circularity, carbon intensity, and cumulative energy demand.
By enabling the system to anticipate and correct deviations from sus-
tainability targets, this hierarchical architecture bridges the gap be-
tween process optimization and long-term ecological objectives.

6. Future perspectives

The control of intensified processes is undergoing a paradigm shift,
driven by emerging technologies that not only integrate seamlessly into
existing systems but also redefine the design, management, and opti-
mization of industrial operations. Several innovative areas have
demonstrated the potential to address current challenges while
advancing efficiency, adaptability, and sustainability.

Generative Al is reshaping the development of control strategies by
enabling the creation of operational models capable of predicting system
behavior and proposing real-time optimal configurations. Combined
with digital twin technologies, these tools provide precise virtual envi-
ronments to simulate and validate control strategies before physical
deployment. Their application has proven particularly effective in
complex industrial settings, including advanced chemical production
and energy-intensive operations.

Meta-learning in process control has emerged as a transformative
approach. This methodology enables algorithms to adapt swiftly to new
data and operational scenarios with minimal external intervention.
When applied to predictive control systems, meta-learning enhances
automation in highly dynamic and nonlinear processes, such as plasma
reactors and thermal-gradient-based separation systems, significantly
improving adaptability and robustness.

The integration of quantum-based sensors represents a major
advancement in process monitoring accuracy. These sensors offer un-
precedented sensitivity, enabling the detection of microfluctuations in
real time—critical for maintaining stability in intensified processes. This
innovation is particularly beneficial for systems operating under
extreme conditions, such as those involved in high-pressure and high-
temperature synthetic fuel production using green hydrogen.

In terms of sustainability, advancements in multi-objective optimi-
zation models facilitate the effective alignment of economic, environ-
mental, and operational goals. These models incorporate metrics such as
carbon footprint, water usage, and energy efficiency, providing inte-
grated decision-making tools that meet the increasing demand for sus-
tainable industrial practices.

The development of autonomous systems guided by algorithmic
ethics is gaining momentum in industrial process design. These systems
consider operational efficiency alongside parameters related to safety
and social impact. For instance, advanced chemical plants are deploying
algorithms designed to mitigate risks associated with human exposure
while ensuring safe and equitable working conditions.

These innovations collectively signify a transformative shift in the
approach to controlling intensified processes. By addressing present
challenges and integrating forward-thinking methodologies, the field is
advancing toward a future defined by enhanced efficiency, resilience,
and sustainability.

To ensure that these emerging control strategies are broadly adopted
and rigorously validated, the availability of open-access datasets and
standardized benchmark problems is becoming increasingly important.
These resources allow researchers and practitioners to test hybrid and
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Al-driven control systems under comparable conditions, facilitating
reproducibility and accelerating innovation. For instance, efforts like the
Al Institute for Dynamic Systems have begun developing structured
datasets and task frameworks specifically for physically-constrained
control applications, serving as a foundation for benchmarking across
sectors.

Such datasets are particularly critical for hybrid control systems,
where integrating first-principles models with machine learning de-
mands systematic evaluation of accuracy, generalizability, and compu-
tational performance. Including benchmark scenarios for common
intensified operations (such as dividing-wall distillation, membrane-
reactive systems, or heat-integrated reactors) would enable the com-
munity to assess the scalability and robustness of proposed solutions in
realistic settings. In turn, this would support the industrial deployment
of adaptive and autonomous control schemes with greater confidence.

7. Conclusion

The evolution of control strategies in process intensification reflects a
broader transformation in industrial process engineering, where
adaptability, predictive capabilities, and sustainability have become key
priorities. Traditional control methods, such as PID controllers, once
dominant, are increasingly inadequate for managing the complexity of
modern intensified processes. The growing reliance on advanced tech-
niques like MPC, Nonlinear MPC, and Al-driven approaches signifies a
shift towards more intelligent, self-optimizing control architectures
capable of handling multi-variable interactions, nonlinear behaviors,
and real-time decision-making.

One of the most significant impacts of this transition is the enhanced
integration of control systems with process design. Unlike conventional
approaches, which often treat control as an afterthought, modern stra-
tegies emphasize a co-optimization framework where control perfor-
mance is considered during the design phase. This shift leads to
inherently more stable, efficient, and flexible process configurations,
reducing the need for costly retrofits and enabling a more seamless
adaptation to fluctuating operating conditions. Hybrid control systems,
which blend model-based and Al-driven techniques, exemplify this
trend by ensuring robust process behavior even under uncertainty,
demonstrating the growing role of machine learning in industrial
automation.

Beyond efficiency and cost savings, these advancements have pro-
found implications for sustainability. As industries strive to meet stricter
environmental regulations and carbon reduction targets, optimized
control strategies play a crucial role in minimizing waste, reducing
emissions, and improving energy efficiency. The ability to dynamically
adjust process parameters in response to real-time data not only en-
hances performance but also enables more sustainable use of resources.
This is particularly critical in energy-intensive processes such as RD and
DWC, where advanced control methods have demonstrated significant
reductions in energy consumption and environmental impact.

The diversification of control strategies across different intensified
processes highlights the need for tailored solutions rather than a one-
size-fits-all approach. Processes such as ED and Hybrid Membrane-
Reactors benefit from targeted methodologies that align with their
specific operational challenges. The increasing adoption of Al-based
control in Catalytic Reactive Systems suggests that future innovations
will likely focus on autonomous and self-learning systems, capable of
continuously improving performance without human intervention.

However, several current bottlenecks still limit the broader deploy-
ment of advanced control in process intensification. These include
model uncertainty, sensor limitations, lack of interoperability with
legacy systems, and computational burdens associated with real-time
optimization in large-scale nonlinear systems. Furthermore, the gap
between control design and sustainability metrics remains a critical area
of concern.

Looking ahead, the integration of digital twins, reinforcement
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learning, and real-time optimization into process control frameworks
presents new opportunities for further enhancing efficiency and resil-
ience. The challenge will be ensuring that these technologies can be
implemented in a scalable, cost-effective manner while maintaining
operational reliability. Additionally, as regulatory frameworks evolve,
industries will need to balance innovation with compliance, ensuring
that advanced control methodologies align with safety and environ-
mental standards.

In this context, future research should also explore computationally
efficient architectures capable of scaling with the complexity of large PI
systems. Distributed and decentralized control strategies offer promising
pathways to reduce centralized computational burdens while enhancing
fault tolerance and modularity. Similarly, edge-Al frameworks can
enable localized, low-latency decision-making, reducing dependence on
cloud infrastructures and facilitating real-time control in network-
constrained environments. These approaches hold particular potential
for modular PI units and geographically distributed chemical production
schemes.

In light of these limitations, future research should focus on four
critical areas: (i) developing interpretable and certifiable Al models that
align with process safety requirements, (ii) embedding lifecycle-based
sustainability indicators into control objectives, (iii) enabling adaptive
control in systems powered by intermittent renewable energy sources,
and (iv) establishing robust co-simulation environments that bridge
design, control, and economic decision-making in intensified
operations.

In conclusion, the trajectory of control strategies in process intensi-
fication underscores a fundamental shift towards smarter, more sus-
tainable industrial operations. The continued convergence of process
design, control, and Al-driven optimization will be pivotal in shaping
the next generation of intensified chemical processes, positioning them
at the forefront of efficiency, adaptability, and environmental
responsibility.
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