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A B S T R A C T

Process intensification has revolutionized chemical process design by integrating reaction and separation, 
enhancing efficiency, reducing energy consumption, and promoting sustainability. However, these advance
ments introduce significant control challenges due to increased process complexity, nonlinear interactions, and 
dynamic constraints. Over the past 25 years, conventional control strategies have been progressively replaced by 
predictive, adaptive, and data-driven methods, which are better suited for managing multivariable interactions 
and real-time optimization. The widespread adoption of predictive control frameworks has improved stability, 
reduced response times, and enhanced energy efficiency in reactive and extractive distillation, dividing-wall 
columns, and hybrid separation processes. Furthermore, integrating intelligent decision-making tools has 
enabled real-time adaptability, ensuring robust performance under fluctuating operating conditions. The 
emergence of hybrid control strategies, which combine predictive models with data-driven learning techniques, 
has further enhanced the ability to address nonlinearities and process uncertainties. This shift underscores a 
transition toward more intelligent and sustainable process operations, where control systems not only optimize 
efficiency but also minimize emissions and improve resource utilization. As process intensification continues to 
advance, future research should focus on scalable, autonomous, and computationally efficient control solutions 
to ensure operational reliability and economic feasibility in sustainable chemical manufacturing.

Nomenclature
AI artificial intelligence
ANN artificial neural networks
ARMA autoregressive moving average
ATJ alcohol-to-jet
BTX benzene-toluene-xylene
CN condition number
CSTR continuous stirred-tank reactor
DAE differential-algebraic equation
DES deep eutectic solvents
DMC dimethyl carbonate
DMCo dynamic matrix control
EDWCs extractive dividing-wall columns
EG ethylene glycol
EMPC economic model predictive control

GOBF generalized orthonormal basis filter
HIDiC heat-integrated distillation columns
IAE absolute error
ICS intelligent control system
LCA life cycle assessment
DWC dividing wall column
MEC micro-engineered catalyst
MIDO mixed-integer dynamic optimization
MINLP mixed-integer nonlinear programming
mp-MPC multi-parametric model predictive control
MRI morari resiliency index
MSE mean squared error
NLP nonlinear programming
NMPC nonlinear model predictive control
PI process intensification
PID proportional-integral-derivative controller
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P-I proportional-integral controller
MPC model predictive control
PMF photocatalysis-membrane filtration
PMRs photocatalytic membrane reactors
PRI process route index
PSD pressure-swing distillation
PSO particle swarm optimization
QDMC quadratic dynamic matrix control
R-DWC reactive divided wall columns
RGA relative gain array
RSM response surface methodology
SMC sliding mode control
SVD singular value decomposition
TAC total annual cost
TCED triple-column extractive distillation
TOC total organic carbon
TPA terephthalic acid

1. Introduction

Process intensification (PI) has redefined chemical and process en
gineering, offering solutions to the pressing demands for efficiency, 
sustainability, and resilience in industrial systems [1]. By integrating 
unit operations and optimizing resource utilization, PI achieves higher 
productivity while significantly reducing energy consumption, emis
sions, and waste [2]. Its applications across diverse industri
es—pharmaceuticals, petrochemicals, and energy—demonstrate its 
potential to transform traditional manufacturing practices into stream
lined, cost-effective, and environmentally friendly systems [3]. How
ever, the success of PI heavily depends on the design and 
implementation of robust control systems capable of managing its 
inherent complexity and dynamic behavior [4,5].

PI was initially considered challenging in terms of control due to its 
complex topology and the integration of multiple unit operations within 
a single unit. This led to the assumption that intensified processes would 
inherently exhibit inferior controllability compared to conventional 
systems. However, subsequent research has demonstrated that this is not 
necessarily the case, as several studies have shown that control prop
erties can be comparable or even superior to those of traditional pro
cesses. For example, Agrawal et al. [6] initially identified the control 
complexity of the Petlyuk column; however, later findings by 
Alvarez-Ramirez & Monroy-Loperena [7] suggested that a simple 
Proportional-Integral (P-I) controller could be sufficient for effective 
operation. Moreover, Skogestad [8] emphasized that control entails 
selecting degrees of freedom, which fundamentally shapes control 
strategy design. This adds another layer of complexity, making control 
design in intensified processes non-trivial yet not inherently 
unmanageable.

Traditional control methods, including Proportional-Integral- 
Derivative (PID) and P-I controllers, have long been the cornerstone of 
process automation [9]. These methods are favored for their simplicity, 
reliability, and effectiveness in maintaining steady-state operations 
across a wide range of applications [10]. PID controllers, for example, 
excel in controlling processes with relatively stable and predictable 
dynamics, offering precise setpoint tracking and disturbance rejection. 
However, when applied to intensified processes, traditional control 
systems often encounter significant limitations due to the nonlinear, 
multi-scale, and highly dynamic nature of these systems [11]. These 
constraints necessitate a shift toward advanced control strategies 
capable of addressing the unique challenges posed by P-I.

Modern advancements in control systems have introduced innova
tive techniques, such as Model Predictive Control (MPC), which provide 
predictive capabilities and handle multivariable interactions with 
operational constraints. MPC has proven particularly effective in 
intensified systems like reactive distillation and membrane separations, 
where dynamic interactions and rapid response requirements are critical 

[12]. Moreover, hybrid control systems that integrate traditional PID 
controllers with artificial intelligence (AI) models have emerged as 
promising solutions [13]. These hybrid systems combine the robustness 
of traditional control with the adaptability and learning capabilities of 
AI, enabling real-time optimization and fault detection in complex 
processes [14].

The emergence of digital twins has further revolutionized the control 
landscape for PI [15]. Digital twins are virtual replicas of physical 
processes that allow real-time simulation, monitoring, and optimization 
of operations [16]. These tools have gained traction for their ability to 
enhance decision-making by providing predictive insights and enabling 
proactive adjustments to maintain optimal performance. For instance, 
digital twin technology has been applied in intensified separation pro
cesses to dynamically simulate and adjust operational parameters, 
improving energy efficiency and reducing downtime [17].

Sustainability is at the core of PI, driving innovation in control sys
tems to meet environmental and operational goals [1]. Traditional PID 
and P-I controllers, while effective in steady-state scenarios, lack the 
flexibility to accommodate rapid changes in operating conditions and 
environmental constraints. Advanced control systems incorporating AI 
and machine learning algorithms have demonstrated their potential to 
significantly reduce energy consumption, improve resource utilization, 
and minimize waste [18]. For instance, Ukoba et al. [19] emphasized 
how advanced AI-based control strategies optimize the monitoring and 
operation of renewable energy systems, enhancing grid stability and 
flexibility through precise forecasting techniques and real-time dynamic 
adjustments. Similarly, circular economy principles have been inte
grated into PI systems, promoting resource recovery and by-product 
reuse through centralized control platforms [20].

Despite these advancements, challenges remain in scaling advanced 
control strategies to industrial applications. Many industries still rely 
heavily on legacy PID-based systems, making the transition to AI- 
enhanced or MPC frameworks resource-intensive and complex. 
Furthermore, intensified processes often require sophisticated sensor 
networks and high-fidelity data acquisition systems to enable real-time 
monitoring and control [21]. Scalability, interoperability, and 
cost-effectiveness are critical barriers to the widespread adoption of 
these technologies.

This review provides a comprehensive analysis of the state-of-the-art 
in process intensification control, examining the evolution from tradi
tional PID and P-I controllers to advanced AI-driven and predictive 
strategies. It explores the integration of digital twins and sustainability- 
focused innovations, highlighting their transformative impact on oper
ational efficiency and environmental performance. The primary 
contribution of this work lies in bridging foundational control tech
niques with cutting-edge technologies, offering a holistic perspective 
that identifies challenges, opportunities, and future research directions 
in the field of process intensification control.

2. Overview of process intensification

PI represents a transformative approach in chemical engineering, 
aiming to enhance the efficiency, sustainability, and compactness of 
industrial processes [22]. By integrating multiple operations, optimizing 
energy and material utilization, and minimizing equipment size, PI ad
dresses the growing demand for environmentally and economically 
viable production methods [23]. Among the various technologies 
developed under the PI framework, intensified distillation processes 
stand out for their ability to tackle energy-intensive separation chal
lenges, making them a focus of this review.

PI encompasses a diverse range of technologies designed to optimize 
energy and resource usage while minimizing operational complexity 
(Table 1). These include microreactors, which enable precise reaction 
control in compact systems; compact heat exchangers, which enhance 
thermal efficiency; plasma-assisted processes, which use plasma energy 
to accelerate chemical reactions; and supercritical fluid technologies, 
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which leverage the unique properties of supercritical states for efficient 
extraction and reaction [24].

The distillation technologies—dividing wall columns (DWCs), 
Extractive Distillation (ED), reactive distillation, and membrane-assisted 
distillation—exemplify the principles of PI by integrating or enhancing 
traditional separation methods to achieve superior performance [25]. 
DWCs, for instance, integrate multiple separation steps into a single unit, 
significantly reducing energy consumption and equipment size [26]. It is 
important to note that DWCs are thermodynamically equivalent to 
Petlyuk configurations, which provide an alternative design approach 
depending on process constraints and design preferences [27].

ED introduces a selective solvent to alter the relative volatilities of 
components, enabling the separation of azeotropic or closely boiling 
mixtures [28]. This method is widely used in the purification of solvents, 
specialty chemicals, and fuels [29]. Reactive distillation, on the other 
hand, integrates reaction and separation in a single unit, optimizing 
equilibrium-limited reactions such as esterification and biodiesel pro
duction [30]. Finally, membrane-assisted distillation combines the 
selectivity of membranes with the separation capabilities of distillation, 
enhancing energy efficiency and broadening the applicability of tradi
tional methods [31].

While there are numerous intensified processes within the broader 
scope of PI, the focus on these distillation technologies reflects their 
widespread industrial relevance and their transformative potential in 
separation processes. This targeted approach enables an in-depth 
exploration of their principles, applications, and contributions to 
advancing industrial efficiency and sustainability.

3. Challenges in control of intensified processes

The control of intensified processes represents a paradigmatic chal
lenge that transcends conventional techniques due to the convergence of 
nonlinear dynamics, extreme physical constraints, and the need for 
unprecedented operational integration [32]. As the chemical and pro
cess industries transition toward more compact, sustainable, and highly 
efficient configurations, complex issues arise related to operational 
stability, the predictive capability of models, and the adaptability of 
control systems to abrupt changes in system conditions.

These limitations are further exacerbated in intensified processes, 

where dynamic interactions, low residence times, and reduced process 
inertia lead to heightened sensitivity to disturbances. Variability in 
feedstock composition, sensor noise, actuator saturation, and model- 
plant mismatch are all examples of process uncertainties that can 
destabilize performance when not properly managed. Therefore, suc
cessful control strategies must be designed with built-in resilience to 
such disturbances, particularly in multiscale systems characterized by 
tight coupling and limited buffering capacity.

One of the most intriguing aspects in this field is the difficulty of 
modeling emergent behaviors arising from interactions between 
coupled processes. For instance, in multifunctional reactors where re
action and separation occur simultaneously, small fluctuations in one 
variable can unpredictably amplify, driving the system into undesirable 
operating zones [11]. This high sensitivity necessitates control systems 
that are not only robust but also capable of anticipating nonlinear 
phenomena through advanced learning algorithms and simulations.

Additionally, the use of distributed sensors and monitoring systems 
based on big data creates a scenario where the volume of information 
generated surpasses the processing capacity of many traditional tools 
[33]. Advances in hardware, particularly Graphics Processing Units 
(GPUs), play a pivotal role in addressing these challenges. GPUs provide 
massively parallel computing capabilities, enabling the processing and 
analysis of substantial volumes of data in real-time [34]. This 
advancement facilitates the implementation of predictive control sys
tems based on hybrid models, which integrate real-time data with sim
ulations grounded in physical principles, ensuring efficient management 
of computational demands.

Technologies such as MPC based on hybrid models—combining real- 
time data with simulations grounded in physical principles—offer a 
promising avenue, albeit one still underutilized due to computational 
and methodological limitations [35–37]. These solutions must be 
capable of identifying critical patterns in real-time, enabling proactive 
rather than reactive control decisions.

Furthermore, intensified processes often operate under extreme re
gimes of pressure, temperature, and reaction rates, imposing severe 
constraints on material selection and the design of sensors capable of 
enduring such conditions without compromising precision or durability. 
The lack of adaptive control tools for these extreme environments limits 
the industrial application of these technologies, emphasizing the need 
for interdisciplinary collaborations among materials engineering, 
informatics, and control engineering [38].

Finally, scaling these solutions from pilot systems to industrial en
vironments remains a critical obstacle. Discrepancies between models 
developed in laboratories and the inherent complexities of industrial 
operations, such as interactions with external systems and economic 
constraints, hinder the direct application of many advanced control 
strategies [39]. This underscores the importance of scalable and adap
tive approaches that account for both uncertainty and the variability 
intrinsic to industrial processes.

The control of intensified processes demands a paradigm shift inte
grating hybrid modeling tools, artificial intelligence, and material 
design to address the challenges of stability, predictability, and scal
ability. The convergence of these approaches can pave the way for a 
future where process intensification becomes not only a technological 
reality but also an industrial standard.

4. Recent advances in process intensification control

This review analyzes 118 peer-reviewed articles published between 
2000 and 2025, retrieved from the Scopus database. The selection 
process was based on the following keywords: "Process Intensification 
Control," "Advanced Control Strategies," "Reactive Distillation Control," 
"Dividing Wall Column Control," and "Extractive Distillation Control." 
The reviewed articles were classified into two primary categories: (1) 
the type of intensified process and (2) the control techniques employed. 
The classification framework encompasses reactive separation systems 

Table 1 
Key intensified processes and their characteristics.

Intensified 
Process

Description Key Applications Benefits

Dividing Wall 
Columns 
(DWCs)

A single column with 
an internal dividing 
wall to achieve 
multiple separations; 
thermodynamically 
equivalent to Petlyuk 
configurations.

Petrochemicals, 
alcohol separation.

Reduced 
energy 
consumption 
and equipment 
footprint.

Extractive 
Distillation

Uses a solvent to alter 
the relative volatilities 
of components for 
separation.

Purification of 
azeotropic or close- 
boiling mixtures.

Higher purity 
with lower 
energy 
requirements.

Reactive 
Distillation

Integrates chemical 
reaction and 
distillation in a single 
column.

Production of 
esters, biodiesel, 
and specialty 
chemicals.

Reduces 
equipment size 
and enhances 
reaction 
efficiency.

Membrane- 
Assisted 
Distillation

Combines membrane 
technology with 
distillation for 
enhanced separation.

Water purification, 
alcohol recovery, 
and hybrid 
separations.

Improved 
selectivity and 
lower 
operational 
costs.

Microreactors Compact systems that 
enable precise control 
over reaction kinetics 
and thermodynamics.

Pharmaceuticals, 
fine chemicals.

Faster reaction 
rates, 
scalability, and 
reduced waste.
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(reactive distillation, extractive distillation, and dividing wall columns), 
catalytic and membrane reactors, hybrid separation processes, and 
energy-integrated distillation. Furthermore, control strategies were 
categorized into classical control (PID-based methods), advanced con
trol (MPC, NMPC, ANN, soft sensors), and hybrid techniques integrating 
AI and model-based control.

4.1. Classification of intensified processes and control strategies

The reviewed works were grouped according to the intensified pro
cess they addressed and the control strategies implemented. Table 2
summarizes the classification and the primary findings.

4.2. Key findings and quantitative insights

The evaluation of control strategies in process intensification high
lights key findings across different intensified processes. Each technol
ogy, including RD, ED, DWC, Hybrid Membrane-Reactors, and Catalytic 
Reactive Systems, has adopted specific control techniques to enhance 
efficiency and stability. The following section presents quantitative in
sights into how these processes benefit from advanced control ap
proaches, improving performance, energy savings, and overall 
operational effectiveness.

4.2.1. Reactive distillation (RD)
In this section, the main works related to the control of RD columns 

are presented, highlighting advances in control strategies, operational 
optimization, and improvements in the stability and efficiency of these 
intensified systems.

Al-Arfaj and Luyben [40] analyzed control strategies for an ideal 
two-product RD column, evaluating six alternative structures. They 
found that integrating composition analyzers in the reactive zone 
improved reactant inventory control and reaction stoichiometry. Dy
namic simulations showed that increasing reactive zone holdup (1 to 2 
kmol/tray) significantly enhanced controllability, maintaining product 
purities of up to 98 % under a 20 % feed flow disturbance. Single-end 
temperature control stabilized product quality while simplifying con
trol loop interactions. Overdesigning the reactive section (increasing 
catalyst holdup or adding reactive trays) improved both steady-state and 
dynamic control. Feedback-based feed adjustments prevented stoichio
metric imbalances, ensuring stability under varying conditions.

Balasubramhanya and Doyle [41] developed a reduced-order 
nonlinear model for nonlinear model-based control (NMPC) of batch 
RD columns, reducing computational complexity while maintaining 
accuracy. The model, based on traveling wave phenomena, required 
only five differential and six algebraic equations instead of the original 
31 differential equations. Applied within an NMPC framework, it ach
ieved tight distillate composition control through tray temperature 
regulation. The approach reduced simulation time by a factor of 6.5 
while maintaining comparable control performance, demonstrating the 
potential of reduced-order models for efficient NMPC in RD systems.

Vora and Daoutidis [42] investigated control strategies for an RD 
column producing ethyl acetate, implementing a multiple-feed config
uration to enhance conversion (from 66 % to 76.8 %) and product purity 
(from 54 % to 65 %). They identified a two-time-scale dynamic 
behavior, where conventional multiloop controllers struggled with input 

multiplicity and nonlinearities. A nonlinear feedback controller based 
on an exact dynamic model outperformed SISO P-I controllers, 
improving setpoint tracking and disturbance rejection. A control strat
egy focusing on slow dynamics enhanced robustness against modeling 
errors, reducing instability risks, and highlighting the necessity of 
nonlinear control in RD systems.

Al-Arfaj and Luyben [43] examined control strategies for an olefin 
metathesis RD column, evaluating three steady-state designs with 
varying pressure and conversion levels. Control studies demonstrated 
that dual temperature control—manipulating tray temperatures via 
reflux and boilup rates—maintained product purity under ±25 % feed 
disturbances. Higher pressure designs with additional trays reduced 
product quality deviations. The study concluded that temperature-based 
control structures detect disturbances faster than composition-based 
control, providing an optimal balance of economic efficiency and 
operability.

Georgiadis et al. [44] explored the integration of design and control 
in RD systems for ethyl acetate production, comparing sequential and 
simultaneous optimization approaches. The simultaneous method 
reduced annual costs by 5 % ($220,000) while improving controlla
bility. Optimal design parameters, including a column diameter of 6.37 
m and heat exchanger areas of 315 m² (reboiler) and 425 m² 
(condenser), enhanced dynamic performance. The system managed si
nusoidal feed disturbances and diurnal cooling variations, achieving 
tighter bottom product purity control and a 10 % reduction in integral 
square error. Their findings demonstrated the advantages of integrating 
design and control using mixed-integer dynamic optimization (MIDO) 
for process intensification.

Al-Arfaj and Luyben [45] conducted an in-depth control study on 
methyl acetate RD, evaluating three control structures—CS1, CS5, and 
CS7—under high- and low-conversion scenarios. CS1, which used three 
composition controllers for stoichiometric feed control, struggled with 
nonlinearity in high-conversion conditions but achieved 95 % conver
sion and 95 % purity in low-conversion cases. CS5, integrating a 
composition controller with a stripping section temperature controller, 
maintained methyl acetate purity between 95.98 % and 96.03 % and 
water purity above 98.55 %, even under 20 % acetic acid feed distur
bances. CS7, a temperature-based control structure optimized using 
singular value decomposition (SVD), identified the most sensitive trays 
and maintained product purities close to specification despite a 20 % 
reboiler duty increase. The findings highlight the superiority of 
temperature-based control in handling nonlinearities and improving 
robustness under high-purity operations.

Al-Arfaj and Luyben [46] analyzed the control of ethyl tert‑butyl 
ether (ETBE) RD columns, comparing double-feed and single-feed sys
tems. The double-feed configuration required internal composition 
control to balance stoichiometry, whereas temperature control alone 
sufficed for the single-feed setup under moderate disturbances. The 
optimized double-feed system, producing 700 kmol/h of ETBE with 99 
% conversion, showed superior dynamic performance when butene feed 
manipulation was used for internal composition control, achieving 99 % 
ETBE purity in the bottoms with minimal ethanol losses. Simulations 
demonstrated that direct composition control provided better robust
ness against feed rate and composition disturbances (+25 % and ±10 
%), whereas temperature control alone risked purity losses under larger 
disturbances.

Grüner et al. [47] developed a nonlinear control strategy for RD 
columns using input/output-linearization combined with an observer, 
achieving enhanced performance in industrial-scale applications. The 
controller, relying solely on temperature measurements, maintained 
product purity under ±5 % feed composition disturbances. Compared to 
a well-tuned linear controller, the nonlinear approach reduced settling 
times, achieving faster convergence with a 75 K setpoint change and 
improved decoupling of tray temperatures (T₄ and T₆₀). Additionally, it 
provided superior disturbance rejection, stabilizing key compositions 
under ±10 % feed flow variations, demonstrating the advantages of 

Table 2 
Control techniques applied in process intensification technologies.

Process Intensification Technology Control Techniques Used

Reactive Distillation (RD) PID, MPC, NMPC, ANN, Soft Sensors
Extractive Distillation (ED) PID, MPC, Dual Temperature Control
Dividing Wall Columns (DWC) MPC, Inferential Control, Ratio Control
Hybrid Membrane-Reactors MPC, ANN, Self-Optimizing Control
Catalytic Reactive Systems NMPC, Adaptive MPC, AI-based Control
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nonlinear control for operational robustness in intensified processes.
Al-Arfaj and Luyben [48] studied the plantwide control of TAME RD 

production, identifying the RD column as the critical unit. Their control 
strategy, combining methanol feed regulation with temperature control 
on specific trays, ensured stable operation under ±20 % feed distur
bances. The optimized design achieved 92 % isoamylenes conversion 
with minimal methanol consumption (508.31 kmol/h), maintaining 
separation efficiency with low reflux ratios (0.5 for methanol and 1 for 
C5s). These results confirm that integrating process-wide control struc
tures enhances stability and efficiency in etherification RD systems.

Huang et al. [49] proposed a temperature control framework for 
heterogeneous RD processes, addressing vapor-liquid-liquid equilibria 
(VLLE) and kinetically controlled reactions. Their design, including 
optimized feed tray locations and decentralized PI controllers, achieved 
99 % product purity while maintaining low acid impurity levels. Using 
the nonsquare relative gain (NRG) method, they identified optimal 
temperature-control trays, enabling one-way decoupled multivariable 
control. Feedforward temperature compensation eliminated 
steady-state offsets and improved transient responses, ensuring stringent 
purity specifications under production rate variations. The results un
derscore the potential of temperature-based control for enhancing the 
stability and efficiency of heterogeneous RD systems.

Kaymak and Luyben [50] conducted a comparative study of two 
temperature-based control structures for RD columns, evaluating their 
dynamic performance under disturbances. CS7, using two P-I controllers 
to regulate fresh feed flow rates, showed rapid stabilization but 
aggressive responses. In contrast, CS8 combined feed and reboiler heat 
duty manipulations, improving sensitivity and dynamic stability 
through optimal tray pairings. In the methyl acetate case, CS8A out
performed CS8B, maintaining product purity within 1 % of the 95 % 
target under disturbances, while CS8A effectively controlled feed 
composition variations up to 5 %. The study highlighted the importance 
of sequential tuning in interacting controllers to enhance system sta
bility in complex RD processes.

Khaledi and Young [51] developed a 2 × 2 unconstrained MPC 
scheme for controlling product purity and reactant conversion in an 
ETBE RD column, addressing nonlinearities and process gain bidir
ectionality. Using a first-order plus dead time model, their MPC 
controller achieved robust disturbance rejection and smooth set-point 
tracking. At 100 kmol/h feed flow and 950 kPa operating pressure, a 
+ 3 ◦C step change at stage 7 demonstrated superior performance over 
PI controllers, maintaining isobutylene conversion above 98 % and 
ETBE purity at 88.7 wt %. The results underscored the effectiveness of 
MPC in stabilizing complex RD systems despite feed composition vari
ations and measurement noise.

Olanrewaju and Al-Arfaj [52] proposed a linearized state-space 
model for RD process control, addressing delays in online composition 
analyzers by implementing a Kalman filter-based state estimator. The 
estimator, coupled with a dual-end composition control strategy, 
maintained setpoints within ±2 % despite plant-model mismatches and 
disturbances. When the reactant B feed flow increased by 10 %, doubling 
the controller gains improved response times and stability. The study 
highlighted that while small estimation errors were tolerable, significant 
deviations in volatilities or initial conditions degraded control accuracy, 
demonstrating the viability of linear state estimators in enhancing 
operational efficiency in RD processes.

Panjwani et al. [53] developed a mixed-integer dynamic optimiza
tion (MIDO) framework for simultaneous RD system design and control, 
achieving a 17 % reduction in total annualized costs. The optimal 
configuration, integrating column diameter, tray configurations, and 
reboiler/condenser surface areas, reduced reflux rate and steam con
sumption by 8 % and 5 %, respectively. Their novel control scheme, 
manipulating steam flow for feed tray temperature regulation rather 
than direct composition control, demonstrated improved operability 
under acetic acid inlet composition and cooling water temperature 
disturbances. The study reinforced the advantages of integrating design 

and control to optimize intensified processes, with potential applications 
in MTBE and ETBE production.

Hung et al. [54] analyzed the control of RD systems for the esteri
fication of acetic acid with C1–C5 alcohols, evaluating three process 
configurations using nonlinearity indices and sign reversal fractions. 
Their findings showed that BuAc exhibited minimal nonlinearity and 
high stability, while MeAc faced severe dynamic challenges due to input 
multiplicities. Temperature control strategies in decentralized configu
rations resulted in settling times of approximately 5 h for BuAc and 
AmAc, and up to 15 h for MeAc. TAC values ranged from $482.54k for 
BuAc to $1.04 M for MeAc at production rates of 52,825 tons/year. The 
study emphasized the critical role of process-specific control strategies 
in improving RD system performance and stability.

Kawathekar and Riggs [55] investigated the application of NLMPC to 
an ethyl acetate RD column, demonstrating its superiority over P-I 
controllers in managing strong nonlinearities. For the [L/D,V] configu
ration, NLMPC reduced the Integral of Absolute Error (IAE) from 2.41 to 
0.91 for the overhead loop and from 6.84 to 2.14 for the bottom loop, 
representing a 2–3-fold improvement in control performance. NLMPC 
also maintained stability under unmeasured disturbances and exhibited 
resilience to process-model mismatches of up to 25 %. Additionally, 
implementing a two-column configuration with a recovery column 
enabled high-purity ethyl acetate production (99.5 %), highlighting the 
advantages of NLMPC in process intensification through enhanced 
disturbance rejection and dynamic performance.

Lee et al. [56] developed advanced control strategies for ethyl ace
tate RD, optimizing sensor placement via closed-loop sensitivity anal
ysis. Their dual-point control strategy maintained EtAc purity above 
99.5 % under ±20 % throughput variations, reducing impurity de
viations to 2 %. Sensor relocation improved steady-state performance 
and dynamic controllability, mitigating overshoot and deviations caused 
by acid feed composition fluctuations. The study quantified trade-offs, 
showing that while dual-point control improved operability and 
disturbance rejection, it introduced more oscillatory responses than 
single-point control. These findings underscore the role of sensor opti
mization in enhancing stability and efficiency in RD processes.

Kumar and Kaistha [57] analyzed the impact of steady-state multi
plicities on methyl acetate RD control, demonstrating that fixed reflux 
rate policies induced unwanted transitions, while a fixed reflux ratio 
approach improved stability. A novel rangeability metric quantifies 
input multiplicity severity, guiding the selection of optimal control 
variables. Dynamic simulations showed that controlling a pseudo-output 
(ΔT = T20 - T8) enhanced robustness, whereas controlling the most 
sensitive tray temperature (T18) led to instability. Ratio control between 
feeds and reboiler duty enabled the system to handle production rate 
increases of up to 40 %, highlighting the necessity of systematic sensi
tivity analysis for robust RD control.

Kumar and Kaistha [58] examined two RD configurations—5–10–5 
(10 reactive trays) and 5–20–5 (20 reactive trays)—to assess their dy
namic behavior and control performance. The 5–20–5 design handled 
±20 % throughput disturbances within 4 h, whereas the 5–10–5 design 
exhibited slower responses. CS2, which manipulated the heavy reactant 
feed, outperformed CS1 in transient stoichiometric balance, stabilizing 
throughput changes up to ±70 %. Controlling reactive tray temperature 
(T15) provided superior disturbance rejection compared to rectifying 
tray control (T18). Despite an 11.8 % increase in vapor boil-up and 
slightly higher cost ($310,730/year vs. $298,160/year), the 5–20–5 
configuration demonstrated better sensitivity and controllability, 
emphasizing the importance of optimized catalyst distribution and tray 
design.

Hsu et al. [59] proposed an intensified RD and ED process for 
dimethyl carbonate (DMC) and ethylene glycol (EG) production, 
achieving complete ethylene carbonate (EC) conversion with excess 
methanol. Using aniline as an entrainer, they enhanced methanol-DMC 
relative volatility, reducing reboiler duty by 32.8 %, entrainer feed ratio 
from 1.965 to 0.883, and column heights, cutting ED stages from 48 to 
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32 and recovery column stages from 32 to 18. Simple tray temperature 
control loops maintained 99.5 % DMC and 99.99 % EG purities, ensuring 
stability under feed and throughput variations. These results demon
strated the economic and operational advantages of the aniline-based 
separation strategy in RD systems.

Wang et al. [60] developed an integrated plant-wide control 
framework for DMC and EG production via RD coupled with thermally 
coupled ED, achieving a 17.6 % reduction in reboiler duty compared to 
conventional ED. The control strategy employed steady-state analysis to 
optimize manipulated and controlled variables, ensuring product pu
rities of 99.8 % DMC and 99.99 % methanol. Temperature control loops 
effectively mitigated disturbances, maintaining stoichiometric balance 
under feed rate fluctuations and vapor split ratio variations. Dynamic 
simulations confirmed that the control scheme maintained process de
viations within acceptable margins, establishing thermally coupled ED 
as an energy-efficient strategy for RD systems.

Kim et al. [61] applied nonlinear wave propagation theory to the 
control of an RD column for terephthalic acid (TPA) synthesis, opti
mizing composition profile positioning to enhance conversion and pu
rity. A wave propagation model demonstrated that continuous methanol 
removal minimized equilibrium limitations, enabling near-complete 
conversion. Profile position control, adjusting vapor and liquid flow 
rates, stabilized wave positions, and maintaining TPA yield above 98 % 
with minimal methanol contamination. The control framework out
performed traditional temperature control, ensuring fast recovery from 
±20 % feed flow variations, underscoring the potential of nonlinear 
wave theory in process intensification.

Sharma and Singh [62] reviewed advanced RD control strategies, 
highlighting MPC, DMC, QDMC, and NMPC as superior alternatives to 
conventional PI/PID controllers. Case studies demonstrated NMPC’s 
improved composition control in ethyl acetate RD, dual-temperature 
control’s robustness in methyl acetate RD, and composition control’s 
effectiveness in MTBE decomposition. Additionally, RD integrated with 
DWC achieved 50 % energy savings. Dual-temperature loops in RDWDC 
enhanced ethyl acetate synthesis stability under disturbances. These 
findings reinforce the role of advanced control strategies in optimizing 
RD operability and efficiency, setting the stage for AI-driven adaptive 
control in intensified systems.

Lin et al. [63] optimized reactive section distribution in an olefin 
metathesis RD column, comparing four configurations. Design-II 
reduced reboiler duty by 5.27 % but degraded controllability, while 
Designs III and IV, which extended the reactive section, achieved 
reboiler duty reductions of 4.51 % and 4.30 %, maintaining superior 
control performance. A dual-point temperature control scheme showed 
that Design-II had larger bottom purity deviations, whereas Designs III 
and IV minimized steady-state errors. Control performance metrics, 
including IAE and steady-state deviation (SSD), confirmed that reactive 
section distribution significantly influences both energy efficiency and 
dynamic stability in RD systems.

Nikacevic et al. [64] analyzed control challenges in intensified pro
cesses such as RD, DWC, and micro-scale reactors, emphasizing NMPC’s 
superiority over traditional controllers. In an ETBE RD column, a 2 × 2 
unconstrained NMPC scheme reduced composition variability by 35 % 
and improved conversion efficiency by 25 % compared to PID control. 
The study highlighted NMPC’s robustness against nonlinearities and 
process interactions, reinforcing its potential for industrial-scale appli
cations in process intensification.

Ignat and Kiss [65] designed an R-DWC for FAME production, inte
grating RD and DWC technologies to achieve 39 % fewer stages, 57 % 
fewer reactive trays, and only a 1.5 % heat duty increase. By feeding 
alcohol as vapor, the system improved product purity and impurity 
control in side streams. SVD identified sensitive trays for inferential 
temperature control, enabling robust disturbance rejection, including 
production rate fluctuations and catalyst deactivation. The control 
scheme maintained 99.8 % purity for methanol and water, demon
strating R-DWC’s potential for optimizing energy efficiency and 

sustainability in biodiesel production.
Seban et al. [66] developed an MPC framework for RD columns, 

integrating Generalized Orthonormal Basis Filter (GOBF) and Autore
gressive Moving Average (ARMA) models to enhance dynamic process 
representation. The GOBF-ARMA MPC achieved superior control per
formance, precisely tracking a distillate purity setpoint increase from 
0.95 to 0.96 mol % while minimizing energy consumption. A 2.5 % feed 
rate disturbance was effectively mitigated, demonstrating robust 
disturbance rejection. This approach optimizes energy use through in 
situ heat integration, improving operational reliability and safety, and 
highlighting its potential for broader industrial applications.

Segovia-Hernández et al. [67] reviewed RD control advancements, 
focusing on deterministic and stochastic optimization methods to 
enhance process intensification. Deterministic approaches, such as 
MINLP and dynamic programming, optimized design parameters, 
achieving over 20 % energy savings. Stochastic techniques, including 
NSGA-II, improved multi-objective RD optimization, enabling 99.9 % 
purity in esterification processes while reducing energy consumption 
and CO₂ emissions by 25 %. Case studies on methyl acetate and ETBE 
demonstrated substantial cost reductions and improved control perfor
mance, emphasizing the role of simultaneous design and control opti
mization in RD sustainability.

Valluru et al. [68] introduced a real-time optimization (RTO) and 
adaptive NMPC framework for RD systems, integrating a nonlinear 
Bayesian estimator (DAE-EKF) to update models dynamically. Applied 
to an RD column with reaction A + B ⇌ C + D, this approach maintained 
product concentration deviations below 1 % under a 10 % reactant B 
feed rate disturbance. The adaptive NMPC, with prediction and control 
horizons of 40 and 4, respectively, ensured offset-free mole fraction 
control. Despite 20 min RTO computation times, the strategy dynami
cally optimized product qualities, proving its economic and operational 
benefits for intensified RD systems.

Baldea [69] analyzed the impact of process intensification on control 
dynamics, demonstrating that high material recycling rates reduce 
equipment size but accelerate system responses. In 
reaction-separation-recycle RD systems, intensified configurations with 
vapor holdups of 1338 mol exhibited nearly twice the response speed of 
integrated systems (1404 mol), as confirmed by eigenvalue analysis. 
However, the faster dynamics introduced tighter process coupling and 
control complexities. The study emphasized that intensified systems 
require real-time MPC to handle nonlinear interactions, underscoring 
process intensification’s unique control challenges and efficiency 
opportunities.

Mansouri et al. [70] integrated process design and control in RD 
systems using reactive driving force diagrams to optimize controlla
bility. Dynamic simulations showed that operating at maximum driving 
force improved stability, with a 12 % isobutene feed step increase 
resulting in stable product compositions and minimal reflux ratio and 
reboiler duty adjustments. Relative Gain Array (RGA) analysis 
confirmed minimized loop interactions, facilitating robust controller 
design. This methodology highlights the potential for achieving resilient 
and sustainable RD systems through integrated design and control.

Mansouri et al. [71] proposed a computer-aided framework for 
simultaneous RD process design and control, applying Mixed-Integer 
Dynamic Optimization (MIDO) for economic feasibility and control 
performance. In a case study on MTBE synthesis, the optimized design 
achieved 98 % isobutene recovery and 84 % MTBE purity, with a 
methanol conversion of 83.15 %. Step-response analysis and RGA cal
culations verified that reflux-to-distillate and reboiler-to-bottom prod
uct control pairings minimized disturbances while maximizing 
controllability. This integrated approach enhances energy efficiency and 
sustainability, demonstrating the benefits of process intensification 
control.

Ramírez-Márquez et al. [72] evaluated control strategies for a 
multitasking RD column producing high-purity silane, dichlorosilane, 
and monochlorosilane. Under 10 % feed flowrate disturbances and 5 % 
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contamination, temperature control stabilized the process with short 
settling times (~3–5 h), despite minor steady-state deviations. Compo
sition control achieved faster responses (~2–5 h) but required online 
chromatographic measurements, limiting industrial feasibility. The 
cascade strategy provided the best disturbance rejection and eliminated 
steady-state offsets but had longer settling times (~7–10 h) and 
increased complexity. Optimal column pressure (2.3 atm) balanced 
transient response and energy efficiency, enabling seamless transitions 
between product outputs by adjusting reflux ratio, reboiler duty, and 
column pressure, ensuring flexible and stable high-purity silane 
production.

Maya-Yescas et al. [73] analyzed process intensification control, 
focusing on stability and manipulated variable selection. In an intensi
fied RD biodiesel process, energy integration reduced cooling demand 
by 91.8 % and heating requirements by 77.8 %, though it introduced 
control challenges due to the loss of degrees of freedom. Advanced 
control methods, such as nonlinear observers and Kalman filtering, 
improved disturbance rejection. In FCC operations, improper variable 
pairings led to unstable control despite multiple manipulated variables, 
highlighting the need for robust observability analysis and optimal 
control pairings to ensure process stability in highly intensified systems.

Mahindrakar and Hahn [74] implemented MPC for RD benzene hy
drogenation, addressing process nonlinearity and fluctuating benzene 
concentrations (3–11 vol %). SISO MPC with input disturbance correc
tion outperformed P-I control, reducing benzene concentration de
viations by 65 % and shortening settling times from 219 to 127 min. 
MIMO MPC showed no additional benefits due to weak variable in
teractions, confirmed by RGA analysis. The results demonstrated that 
incorporating an input disturbance model enhances rejection perfor
mance without requiring real-time composition measurements, offering 
a cost-effective solution for intensified RD systems.

Chen et al. [75] developed a thermally coupled RD system for methyl 
valerate (VAME) production, achieving a 30.3 % energy reduction, 
though TAC decreased only by 17 % due to compressor inclusion. Dy
namic simulations under ±20 % throughput and ±5 % composition 
disturbances showed faster stabilization and smaller steady-state de
viations compared to conventional setups. Product purities (99 mol % 
VAME and water) remained stable, confirming the thermally coupled 
system’s robustness. The study highlights thermal coupling as a viable 
strategy for enhancing both economic and operational performance in 
industrial-scale RD applications.

Mansouri et al. [76] introduced a hierarchical decomposition 
framework integrating process design and control for multi-element RD 
systems. In MTBE production, the optimal seven-stage RD design 
required 856.6 kW, significantly lower than alternative designs 
exceeding 2000 kW. Dynamic performance analysis demonstrated rapid 
rejection of a + 16.5 % methanol feed disturbance with minimal over
shoot. Sensitivity analysis, RGA, and MPC outperformed P-I controllers, 
reducing control effort and enhancing disturbance rejection. The study 
underscores how integrating process intensification control optimizes 
energy efficiency, economic viability, and operational robustness in 
chemical processes.

Giwa et al. [77] applied MPC to a biodiesel RD system, optimizing 
tuning parameters (control horizon: 11, prediction horizon: 18, manip
ulated variable rate weight: 0.05, output weight: 2.17) to achieve 
set-point tracking within 60 min with minimal oscillations. Under a 
0.4-unit step change, IAE and ISE were reduced to 6.05 and 2.05, 
respectively, demonstrating MPC’s efficiency in servo control. However, 
disturbance rejection exhibited prolonged settling times (~800 min), 
indicating challenges in dynamic disturbance management. Compared 
to PID control, MPC provided superior precision and reduced oscilla
tions, though further tuning is needed for improved response under 
variable operating conditions.

Dias and Ierapetritou [78] reviewed intensified process control ad
vancements, highlighting NMPC’s capability to handle dynamic distur
bances but noting computational complexity as a limitation. 

Multi-parametric NMPC (mp-MPC) emerged as a viable alternative, 
reducing online computation times in pressure swing adsorption. Inte
grating scheduling with control enhanced transient operation efficiency, 
while EMPC outperformed conventional strategies in economic perfor
mance. The study emphasized the potential of AI and parallel computing 
in real-time optimization, improving sustainability and efficiency in 
chemical process industries.

Ge et al. [79] optimized RD and RDWC configurations for formic acid 
production using genetic algorithms, with RDWC achieving a higher 
methyl formate conversion (88.7 %) than RD (72.4 %) despite a slight 
increase in energy consumption (8.2 %) and total annual cost (4.3 %). 
Dynamic control comparisons showed that MPC significantly out
performed PI control, reducing maximum deviations and improving 
settling time and ISE. For a ± 10 % feed disturbance, MPC reduced tray 
temperature deviations (e.g., T40, RD) from 8.4 ◦C under PI to 1.3 ◦C, 
demonstrating its effectiveness in managing nonlinear interactions and 
improving system operability.

Sakhre [80] conducted a comprehensive review of advancements in 
RD control, focusing on strategies to address nonlinearity, process effi
ciency, and optimization techniques. The study explored the application 
of MINLP for RD configuration optimization, highlighting its role in 
achieving cost-effective designs and improving process feasibility. The 
review emphasized the importance of integrating model-based control 
approaches to enhance stability, minimize energy consumption, and 
ensure robust operation in intensified RD systems. These findings 
demonstrate the ongoing evolution of control methodologies aimed at 
increasing efficiency and sustainability in reactive distillation.

Pistikopoulos et al. [81] analyzed intensified and modular process 
control, showing that intensified RD designs impose narrower opera
tional windows and stricter constraints. Multi-parametric MPC 
(mp-MPC) demonstrated superior disturbance rejection over P-I con
trollers, maintaining product purity. Modular RD in olefin metathesis 
improved operability via increased DOFs, allowing synchronized oper
ations across parallel units but raising the total annual cost by 18.8 %. 
The study emphasized integrated design-control frameworks as key to 
optimizing dynamic performance, market adaptability, and sustain
ability in intensified processes.

Alcántara Avila et al. [82] conducted a comprehensive review on 
process intensification control, emphasizing the integration of optimi
zation and control strategies to improve efficiency, sustainability, and 
dynamic operability. The study highlights the increasing complexity of 
intensified systems, necessitating advanced methodologies for real-time 
optimization. A key focus is on superstructure-based optimization, 
particularly MINLP, for systematically evaluating process configurations 
and optimizing RD systems. The review also discusses simultaneous 
design and control methodologies, such as MIDO, to enhance system 
resilience and disturbance management. Findings demonstrate that 
energy-efficient control strategies, including thermally coupled RD 
configurations, can achieve significant energy savings while maintain
ing robust performance. The study underscores the importance of inte
grating process intensification, optimization, and control to develop 
next-generation intensified systems with enhanced operational stabil
ity and economic feasibility.

Tian et al. [83] developed a simultaneous design and control 
framework for RD systems, integrating MIDO and Explicit MPC to 
enhance process intensification. The study introduced design-aware 
control, linking control laws to design variables such as column diam
eter and catalyst distribution. Applied to an MTBE RD system, this 
approach reduced total annualized cost by 7 % while maintaining 98 % 
bottom product purity under disturbances. By leveraging explicit MPC, 
the system identified 17 critical operating regions, ensuring rapid, 
computationally efficient responses to feed variations. The findings 
highlight how integrating control into the design phase enhances 
operability, economic performance, and robustness, representing a 
major step forward in process systems engineering.

Iftakher et al. [84] proposed an integrated design and control 
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framework for RD systems, using the driving force approach to optimize 
process performance and controllability. The study demonstrated that 
maximum driving force-based designs improved energy efficiency, 
reduced CO₂ emissions, and enhanced dynamic control. Through 
steady-state and dynamic simulations in Aspen Plus, multi-objective 
performance metrics were evaluated, including energy consumption, 
control indices (RGA, NI), and disturbance rejection capabilities. Results 
showed that optimized designs reduced energy consumption by 15 % 
and improved control efficiency by 20 %, maintaining minimal loop 
interaction (RGA ~1) and stable responses under P-I and MPC control. 
The study underscores the importance of integrating design and control 
methodologies to develop sustainable and operable intensified 
processes.

Iftakher et al. [85] introduced the RD-Toolbox, a computer-aided 
platform for integrating RD process design and control, addressing the 
complexities of intensified systems. This tool automates steady-state and 
dynamic simulations while enabling controllability evaluation. The 
study compared superstructure optimization and driving force-based 
methods for ETBE and ethyl acetate RD systems, showing that driving 
force-based designs reduced energy consumption by 25.2 % despite 
lower profit margins due to reduced production. Both designs demon
strated effective disturbance rejection under P-I and MPC, with RGA 
values near unity and NI confirming stability. In ethyl acetate produc
tion, the RD-Toolbox optimized a 15-stage column at maximum driving 
force, ensuring robust control performance. This tool represents a sig
nificant advancement in RD process development, systematically opti
mizing energy efficiency and control robustness.

Contreras-Zarazúa et al. [86] explored process intensification for 
biojet fuel production via the Alcohol-to-Jet (ATJ) pathway, replacing 
conventional oligomerization with a catalytic RD column. This intensi
fied design achieved a 20 % reduction in TAC, a 50 % decrease in 
environmental impact (Eco-indicator 99), and a 22 % lower accident 
risk. The system directly produced hydrocarbons (C8-C16) meeting 
ASTM D7566–21 biojet fuel specifications, eliminating additional frac
tionation steps. Control studies validated the feasibility of P-I and MPC 
strategies, with P-I control demonstrating 30 % lower IAE and better 
disturbance rejection. While MPC exhibited advantages for complex 
scenarios, its performance was limited under large disturbances due to 
predictive model constraints. These findings confirm RD’s potential to 
enhance efficiency, reduce environmental impact, and improve opera
tional safety, making it a viable solution for sustainable aviation fuel 
production.

Moraru et al. [87] developed a plantwide control strategy for RD 
systems with recycle streams, focusing on material inventory balance, 
reaction stoichiometry maintenance, and ensuring production rate and 
product purity. The strategy was validated through dynamic simula
tions, where flowrate and composition variations were introduced to test 
the proposed control structure. The results demonstrated the system’s 
ability to maintain operational stability under disturbances, ensuring 
process performance remains within the desired specifications.

4.2.2. Extractive distillation (ED)
This section reviews recent studies on the control of ED systems, 

focusing on strategies for improving process stability, optimizing solvent 
selection, and enhancing energy efficiency. Advances in dynamic 
modeling and control methodologies are analyzed to address opera
tional challenges and improve system performance.

Luyben [88] analyzed the impact of solvent selection on the dynamic 
controllability of ED processes, demonstrating that solvent properties 
significantly influence both steady-state economics and control perfor
mance. Using Aspen Plus and Aspen Dynamics, the study compared 
three solvents—water, dimethyl sulfoxide (DMSO), and chlor
obenzene—for separating an acetone-methanol azeotropic system. 
DMSO exhibited superior control stability, achieving 99.95 % purity for 
both acetone and methanol, with a 7 % faster stabilization time (1 h vs. 
1.5–2 h for other solvents). Control strategies involved dual temperature 

control loops, with the chlorobenzene system requiring additional 
steam-to-feed ratio controllers due to its slow transient response. The 
findings emphasized that solvent selection should integrate dynamic 
controllability criteria, as solvents with optimal VLE properties enhance 
process stability and economic efficiency without introducing additional 
control complexities.

Wang et al. [89] optimized an ED system for methylal/methanol 
separation, evaluating control performance using Aspen Plus and Aspen 
Dynamics. The study compared two control structures: a fixed reflux 
ratio scheme and a reflux-to-feed (R/F) ratio strategy, demonstrating 
that the R/F control approach significantly improved disturbance 
rejection, effectively handling 20 % fluctuations in feed flow rate and 
composition. The optimized system, featuring an ED column with 52 
stages and an entrainer recovery column with 22 stages, maintained a 
methylal purity of 99.9 wt % at an entrainer flow rate of 2900 kg/h. The 
R/F control strategy reduced total annualized cost (TAC) to $615,390, 
highlighting its efficiency in enhancing both economic feasibility and 
dynamic stability in intensified separation processes.

Gil et al. [90] developed an ED process for ethanol dehydration using 
glycerol as an entrainer, integrating energy-efficient control strategies. 
The study identified optimal operating conditions, including a reflux 
ratio of 0.35 and an entrainer-to-feed molar ratio of 0.45, yielding sig
nificant energy savings. Two control strategies were implemented: 
entrainer makeup flow rate control for recovery column level regulation 
and entrainer feed flow rate control, with the latter demonstrating su
perior dynamic performance. Under feed composition and flow distur
bances, the second strategy stabilized within 2–3 h, maintaining ethanol 
purity at ≥99.5 mol % with minimal temperature deviations (≤3 ◦C). 
These findings highlight glycerol’s viability as a sustainable entrainer, 
achieving operational excellence while reducing energy demand.

Luyben [91] designed an ED control strategy for CO₂/ethane sepa
ration in enhanced oil recovery (EOR) processes, addressing the chal
lenge of a minimum-boiling azeotrope at cryogenic temperatures. A 
two-column configuration using natural gas liquid (NGL) solvent effi
ciently removed CO₂ in the extractive column’s distillate (95.57 mol % 
purity) while recovering C₂ and heavier hydrocarbons in the second 
column. A plantwide control structure was developed, demonstrating 
that single-end temperature control was insufficient due to solvent-light 
key similarities. Instead, a composition controller regulating the 
reflux-to-feed ratio ensured product purity stability despite feed dis
turbances. Dynamic simulations confirmed stable reboiler and 
condenser duties (73.32 MW and 110.2 MW, respectively), proving that 
advanced control strategies can effectively manage azeotropic separa
tions in industrial applications.

Ramírez-Márquez et al. [92] investigated dynamic control strategies 
for ethanol dehydration ED processes, comparing five distillation con
figurations, including conventional (CLR, CVR), side-stream (SSVR), and 
thermally coupled (DWC-TCLR, DWC-TCVR) systems. The SSVR 
configuration with glycerol demonstrated the best dynamic perfor
mance, achieving the lowest IAE values for ethanol and water compo
sition control. Specifically, SSVR-GL exhibited reboiler duties of 
4902.93 kW and an annualized capital cost of $107.8k, outperforming 
traditional configurations in energy efficiency and controllability. 
Relative Gain Array (RGA) analysis revealed strong interactions across 
all systems, with DWC-TCLR and SSVR showing improved stability 
under RGA-based control loops. Additionally, glycerol exhibited lower 
toxicity, reduced CO₂ emissions, and superior control behavior 
compared to ethylene glycol. These findings highlight the potential of 
side-stream and thermally coupled ED sequences in achieving sustain
able and energy-efficient ethanol dehydration.

Ramos et al. [93] developed an optimal control strategy for ED in 
fuel-grade ethanol production, employing glycerol as an entrainer to 
enhance separation efficiency. The study applied dynamic optimization 
using a DAE model, discretized via orthogonal collocation, and solved 
through large-scale nonlinear programming in GAMS. Results demon
strated that optimizing reflux ratio and reboiler duty significantly 
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improved system stability, outperforming conventional P-I control 
under sinusoidal and step disturbances. The optimal control approach 
maintained product quality and economic profitability, achieving a 50 
% net profit increase. Real-time feasibility was validated, with solution 
times as low as 9 s, highlighting the potential of dynamic optimization in 
process intensification.

Segovia-Hernández et al. [94] investigated the controllability of 
intensified bioethanol separation sequences, comparing conventional 
(CLR, CVR), side-stream (SSVR), and thermally coupled (TCLR, TCVR) 
ED systems. Using SVD, the study assessed system stability, showing that 
SSVR and CVR with glycerol exhibited higher minimum singular values 
and lower condition numbers, indicating superior dynamic robustness. 
Closed-loop P-I control simulations confirmed that SSVR-GL achieved 
the lowest IAE (0.00857) in ethanol purity control, outperforming 
thermally coupled sequences. These findings emphasize the role of sol
vent selection and process configuration in enhancing control perfor
mance and operability in intensified separation systems.

Errico et al. [95] introduced a two-column ED configuration for 
bioethanol purification, reducing capital costs by 10 % and energy 
consumption by 4.5 % compared to traditional three-column setups. 
Closed-loop dynamic analysis with P-I controllers showed superior sta
bility, with the IAE for water control decreasing from 0.0929 to 
0.000084. The optimized system achieved a 99 % ethanol recovery rate, 
outperforming conventional sequences while also reducing CO₂ emis
sions (2.169 ton/h vs. 2.271 ton/h). These findings demonstrate that 
process intensification can enhance both economic and environmental 
performance, while maintaining robust control characteristics.

Luyben [96] compared the dynamic controllability of conventional 
and thermally coupled ternary ED systems, analyzing benzene, cyclo
hexane, and toluene separation. Aspen Dynamics simulations demon
strated that the thermally coupled system reduced reboiler duty by 14 % 
(3.632 MW vs. 4.230 MW) but exhibited inferior dynamic performance. 
The conventional system, using pressure-compensated temperature 
control, maintained 99 mol % benzene purity, while the thermally 
coupled design required composition control due to a flat temperature 
profile. Dynamic tests revealed greater purity deviations under feed 
disturbances in the thermally coupled system, highlighting the trade-off 
between economic efficiency and dynamic operability in intensified 
processes.

Ahmadian Behrooz [97] developed a robust control strategy for the 
ED of benzene-acetonitrile azeotropes, using dimethyl sulfoxide (DMSO) 
as a solvent. The study optimized fixed reflux ratio and fixed 
reflux-to-feed ratio control structures, demonstrating that reflux-to-feed 
ratio control improved regulatory performance, maintaining 99 % 
benzene and 99.9 % acetonitrile purity under Gaussian-distributed feed 
variations (mean 65 wt % benzene, σ = 3.5 wt %). Design modifications, 
including two additional plates and increased column diameter, pro
vided a safety margin against flooding. The optimized fixed 
reflux-to-feed ratio structure (CS2) achieved faster transient responses, 
superior disturbance rejection, and only a 6.94 % increase in TAC, 
showcasing the effectiveness of integrating stochastic optimization with 
dynamic control in azeotropic separations.

Zheng et al. [98] analyzed the dynamic controllability of 
heat-integrated ED processes, comparing two novel configurations that 
integrate preconcentration and entrainer recovery. While achieving 
over 13 % energy savings, these systems introduced control challenges 
due to reduced degrees of freedom. Using SVD, the authors optimized 
temperature control tray selection and implemented three temperature 
control loops, which effectively managed ±20 % feed flowrate and 
composition disturbances, maintaining product purity with reduced IAE 
values. The findings confirm that feed-forward ratio controllers enhance 
dynamic stability, making heat-integrated ED feasible for industrial 
applications.

Cao et al. [99] evaluated the economic and control performance of 
pressure-swing distillation (PSD) and ED for separating azeotropic sys
tems in a varied-diameter column. The cascade control strategy (CS2) 

for PSD, incorporating temperature and composition controllers, suc
cessfully maintained product purity (99.5 mol %) under ±20 % distur
bances, with settling times of 3 h. In contrast, ED required a more 
complex control configuration (CS4) and struggled with ±10 % distur
bances, stabilizing after 4 h. The study highlights that PSD with VDC 
outperforms ED in both control and economic feasibility, making it the 
preferred option for industrial applications with variable conditions.

Wang et al. [100] optimized the control structure for separating the 
ternary azeotropic mixture toluene-methanol-water via ED, comparing a 
three-column system and a two-column system with a decanter. The 
two-column process reduced TAC by 51.4 % while maintaining 99.9 mol 
% methanol purity. An improved control structure (CS4), integrating a 
proportional controller and an increased solvent flow rate, enhanced 
disturbance rejection. Increasing solvent flow to 85 kmol/h ensured 
stable operation, with only a 6.25 % increase in solvent use, demon
strating a balance between efficiency and controllability in process 
intensification.

Zhang et al. [101] designed and optimized control strategies for ED 
in ethyl acetate-ethanol separation, evaluating conventional and 
heat-integrated configurations. The B1-E configuration achieved 8.77 % 
energy savings and 4.38 % lower operating costs. Dynamic analysis 
identified single-end temperature control with a feed-forward strategy 
(CS3) as the most effective in reducing transient deviations. For 
heat-integrated systems, a bypass control scheme with dual-point tem
perature control ensured operational robustness under disturbances. 
These results emphasize that optimized control strategies are essential 
for enhancing the efficiency of intensified separation processes.

Luyben [102] examined the impact of pressure on solvent-to-feed 
(S/F) ratios and control performance in heat-integrated ED processes, 
comparing 1 atm and 10 atm configurations. The higher-pressure system 
reduced S/F ratio from 3.52 to 0.717, significantly cutting solvent 
flowrate (387 kmol/h vs. 1900 kmol/h) and reboiler duty (14.0 MW to 
10.9 MW). However, the dynamic analysis revealed that the conven
tional reflux-to-distillate control strategy failed at 10 atm, causing os
cillations and purity loss under feed composition variations. A modified 
reflux-to-feed control strategy improved stability, while an adaptive 
nonlinear solvent-to-feed controller successfully maintained methanol 
purity (99.5 mol %) under large disturbances. These findings underscore 
the importance of integrating advanced control strategies in 
high-pressure and heat-integrated ED processes to ensure stability and 
efficiency.

Jaime et al. [103] evaluated advanced control strategies for ethanol 
dehydration via ED, comparing a conventional scheme (Strategy 1) with 
a modified feedback-based control strategy (Strategy 2) regulating sol
vent flow and recovery column dynamics. Dynamic simulations 
confirmed that Strategy 2 achieved superior stabilization times (1–2 h 
vs. 3–5 h in Strategy 1), effectively managing glycerol concentrations to 
prevent hydraulic challenges linked to increased viscosity. Under feed 
disturbances (80–84 mol % ethanol), temperature variations remained 
within ≤0.5 ◦C, and ethanol purity deviations were limited to 0.4 mol %, 
ensuring process stability and energy efficiency with a reboiler duty of 
4281 kJ/s. These results underscore the effectiveness of dynamic control 
structures in managing non-linear, multivariable ED systems.

Das Neves et al. [104] developed an AI-driven control system for ED 
in anhydrous ethanol production, utilizing ANNs for real-time setpoint 
adjustments. The two-ANN model significantly improved control accu
racy, reducing ISE from 9.02 × 10⁻⁸ to 2.4 × 10⁻⁸, and achieved energy 
savings of 0.90 % and 0.94 % for − 20 % and +20 % feed flow distur
bances, respectively. Compared to conventional feedback controllers, 
ANN-based control minimized response times and enhanced disturbance 
rejection, proving its feasibility as an efficient and adaptive alternative 
for process intensification.

Pan et al. [105] integrated deep eutectic solvents (DES) and 
advanced control strategies for energy-efficient ethanol dehydration via 
ED. A multi-objective genetic algorithm optimized the system, reducing 
reboiler duty by 55 kW through waste heat recovery. Comparing five 
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control strategies, MPC outperformed P-I based schemes, reducing 
destroyed exergy by 58.43 kW. A ratio control strategy, derived from 
steady-state design simulations, enhanced feed composition disturbance 
rejection, enabling predictive adjustments and minimizing transient 
deviations. These findings highlight the role of model-based control in 
improving process stability and sustainability in intensified separations.

Ma et al. [106] analyzed the dynamic controllability of a side-stream 
ED process, focusing on response to feed disturbances. Conventional 
control structures failed under ±10 % disturbances, necessitating an 
advanced cascade control strategy for side-stream composition and 
temperature regulation. While improving acetone purity stability, the 
method struggled with methanol purity deviations. A refined 
side-stream flowrate-to-feed flowrate ratio control achieved stable 
product purities within 16 h for ±10 % disturbances, but remained 
ineffective for ±20 % variations. The most effective strategy, integrating 
a composition controller and side-stream throughput valve, achieved 
stability within 8–12 h, handling ±20 % feed rate fluctuations with 
delayed stabilization. Despite prolonged transients compared to con
ventional ED (1.5 h to steady state), the side-stream process improved 
energy efficiency, demonstrating the trade-offs between intensification, 
energy savings, and operational stability.

Ma et al. [107] reviewed dynamic control advancements in ED, 
emphasizing the integration of control strategies with process intensi
fication techniques. The study explored Extractive Dividing-Wall Col
umns (EDWCs), achieving up to 11.6 % TAC reduction while enhancing 
energy efficiency. Advanced control strategies, including fuzzy-PID 
controllers, demonstrated improved robustness against feed distur
bances, maintaining product purity with minimal deviations. The results 
highlight the importance of coupling design and control methodologies 
to optimize ED process stability and economic performance.

Yang et al. [108] optimized and controlled a Triple-Column Extrac
tive Distillation (TCED) process for separating ethyl acetate, ethanol, 
and water, achieving a 14.11 % TAC reduction and 15.23 % lower 
exergy losses compared to conventional methods. Three control strate
gies were tested: fixed reflux ratio (CS1), dual temperature control 
(CS2), and feedforward-based control (CS3). CS3 exhibited superior 
disturbance rejection, maintaining 99.9 mol % product purity under 
±10 % feed variations, with stabilization times of ~3 h. These findings 
highlight the effectiveness of integrated ED control strategies in 
enhancing operability and sustainability.

Zhang et al. [109] examined thermally coupled ED systems for 
separating THF, ethanol, and water, demonstrating higher energy effi
ciency and process stability. The integration of feedforward reboiler 
duty control and sensitive tray temperature adjustments minimized 
transient deviations and steady-state offsets. The intensified process 
achieved IAE values of 0.0012 under ±20 % feed disturbances, signifi
cantly outperforming conventional systems. These results underscore 
the potential of thermally coupled ED for optimizing both economic and 
control performance.

Araújo Neto et al. [110] developed an intelligent control system 
(ICS) for ED-based ethanol production, leveraging ANNs to dynamically 
adjust setpoints. The soft sensor-based approach ensured seamless 
transitions to new steady states within 1–2 h, avoiding manual in
terventions and preventing overflow or emptying in reflux vessels. 
Simulation results showed that the ICS optimized solvent-to-feed ratios, 
reducing energy consumption while maintaining ethanol purity between 
99.1 % and 99.9 %. These findings validate the feasibility of ANN-based 
control in industrial ED applications.

Zhang et al. [111] assessed dynamic control in vapor 
recompression-assisted ED, focusing on acetone-methanol separation. 
Traditional temperature control strategies exhibited significant product 
offsets under disturbances, prompting the development of a 
dual-impurity control strategy, regulating solvent-to-feed and 
reflux-to-distillate ratios. This optimized strategy reduced TAC by 20.53 
% and energy consumption by 27.21 %, while vapor recompression cut 
energy use by 62 % and CO₂ emissions by 55.92 %. These results 

highlight the necessity of plant-wide composition control for multivar
iable, heat-integrated ED processes.

Zhang et al. [112] proposed a double side-stream ternary ED 
configuration, achieving a 31.52 % TAC reduction while improving 
dynamic control performance. The temperature-cascade control loops 
effectively managed ±20 % feed disturbances, restoring product com
positions with minimal transient deviations. Partial heat integration and 
adaptive solvent flow regulation further enhanced operational flexi
bility, reducing TAC by 7.78 %–15.21 % in different case studies. 
Despite these advantages, challenges related to plumbing arrangements 
and control valve placements were noted, emphasizing the importance 
of integrating control robustness in process intensification strategies.

Neves et al. [113] developed an ANN-based intelligent control sys
tem for ED in anhydrous ethanol production, enhancing process stability 
and efficiency under simultaneous feed disturbances and product spec
ification changes. The ANN-based controller dynamically adjusted set
points in response to ethanol purity variations, significantly 
outperforming conventional P-I control. Steady-state errors were 
reduced up to 35 times, and setpoint adjustments were completed within 
2–4 h. Trained with 1000 datasets, the ANN model captured process 
nonlinearities, ensuring robust disturbance rejection while maintaining 
minimum energy consumption, demonstrating the feasibility of 
AI-driven adaptive control in process intensification.

Liu et al. [114] optimized side-stream ED (SED) configurations for 
separating pressure-sensitive azeotropes, achieving a 6.6 % reduction in 
TAC and an 11.9 % decrease in CO₂ emissions compared to conventional 
designs. The SED1 configuration demonstrated superior operational 
safety, confirmed by the lowest Process Route Index (PRI). To enhance 
control performance, an MPC strategy was implemented, reducing IAE 
under dynamic disturbances, ensuring precise composition control, and 
outperforming P-I control in response time and robustness. These find
ings highlight the advantages of integrated design-control methodolo
gies in energy-efficient intensified systems.

Wang et al. [115] developed an optimized control structure for a 
side-stream ED column used in methanol/toluene separation, achieving 
a 17.57 % TAC reduction and a 13.56 % decrease in energy consump
tion. Sensitivity analyses confirmed that optimizing entrainer concen
tration improved operational performance. Single Composition Control 
Structures (SCCS) outperformed Single Temperature Control Structures 
(STCS) in maintaining product purity under dynamic disturbances, 
demonstrating that composition-based control ensures greater process 
stability and economic efficiency in intensified ED systems.

Wu and Chien [116] proposed a cost-effective control strategy for 
hybrid reactive-extractive distillation (DCRED), eliminating composi
tion analyzers by using temperature and temperature-difference (TD) 
controllers. Their optimized control structure (CS3) exhibited superior 
disturbance rejection, achieving IAE reductions from 63.6 to 8.45 for the 
TBA/EtOH/H₂O system and from 1959 to 51.5 for the THF/EtOH/H₂O 
system. The invariant TD control loops ensured stable product purity 
even under ±10 % feed disturbances, demonstrating scalability and 
practicality for process intensification.

Torres Cantero et al. [117] evaluated four classical control structures 
(L, D, LV, and DV) for an ED column using CaCl₂ as an entrainer in 
bioethanol production. Temperature-based inferential control strategies 
were tested via sensitivity analysis and SVD. Single-end structures (L and 
D) showed lower energy consumption (2.23 kW) and minimal ethanol 
purity deviations, while dual-end structures (LV and DV) exhibited 
faster transient responses but increased energy consumption, with DV 
requiring 200 % more reboiler duty. Error analysis confirmed L as the 
most energy-efficient structure, demonstrating the effectiveness of 
conventional control strategies in bioethanol dehydration.

Zhang et al. [118] integrated self-optimizing control into the design 
phase of ED processes, enhancing both economic efficiency and opera
tional stability. Their optimized two-column configuration for 
acetonitrile-water separation achieved a 32 % TAC reduction, while a 
multi-objective optimization framework minimized temperature drift, 
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improving temperature stability by 38.7 % compared to conventional 
setups. By reducing the number of control loops, the study demonstrated 
simplified control structures with robust disturbance rejection, ensuring 
smooth process transitions and dynamic controllability, reinforcing the 
role of integrated design-control methodologies in PI.

Ge et al. [119] optimized ED for formic acid-water separation, 
achieving a 27.01 % CO₂ emissions reduction and a 23.45 % TAC 
decrease compared to conventional methods. Their study demonstrated 
that MPC outperformed multi-loop P-I control, reducing overshoot, os
cillations, and settling times by over 60 %. The optimized control 
strategy ensured 98 % formic acid purity and 99 % water purity, high
lighting the critical role of advanced control frameworks in enhancing 
stability, efficiency, and sustainability in PI.

Neto et al. [120] investigated an intelligent control system based on 
ANNs for Indirect-Extractive Distillation (IED) in the separation of 
tetrahydrofuran, ethyl acetate, and water, a complex ternary azeotropic 
mixture. Compared to conventional control, the ANN-based system 
demonstrated superior performance in handling composition distur
bances, significantly minimizing offsets from nominal product specifi
cations. By automatically adjusting temperature profiles, the intelligent 
control system outperformed conventional approaches in terms of the 
IAE, ensuring enhanced dynamic stability with minimal human inter
vention. These findings highlight the scalability and robustness of 
ANN-based control for improving operational efficiency in intensified 
distillation processes.

4.2.3. Dividing wall column (DWC)
This section provides an overview of research on the control of 

DWCs, highlighting developments in process integration, operational 
flexibility, and control structure design. The reviewed studies discuss 
approaches to improve product purity, energy consumption, and system 
robustness in intensified distillation processes.

Serra et al. [121] investigated advanced control strategies for DWCs, 
focusing on MIMO control structures to enhance process intensification. 
Their study optimized diagonal feedback and dynamic matrix control 
(DMCo) approaches for ternary separations, identifying the D-S-B paired 
control structure as the most robust, achieving a bandwidth frequency of 
0.021 rad/min, a Morari resiliency index (MRI) of 0.65, and a condition 
number (CN) of 4.6. While DMC showed potential, it struggled with 
nonlinearity and slower convergence, requiring precise system identi
fication. The research underscores the trade-off between energy opti
mization and controllability, highlighting that tailored control 
structures in DWCs are essential for operational stability and process 
efficiency in intensified distillation systems.

Adrian et al. [122] advanced DWC control by implementing MPC, 
demonstrating superior stability and disturbance rejection over con
ventional P-I controllers. For feed flow disturbances, MPC reduced 
temperature deviations from 6 to 8 K (PI) to 2–3 K and stabilization time 
from 12 to 2 h. Similarly, for feed composition disturbances, MPC 
limited deviations below 2 K and reduced stabilization time from over 
10 h to 3 h. Experimental results from a miniplant-scale DWC confirmed 
that MPC effectively handled the strong multidimensional interactions 
inherent in DWCs, enabling operations closer to energy efficiency limits. 
Despite requiring three times the tuning effort compared to PI, MPC 
significantly improved dynamic performance and economic feasibility, 
reinforcing its potential for process intensification control.

Van Diggelen et al. [123] evaluated advanced multivariable control 
strategies for industrial DWCs, comparing PID controllers with 
LQG/LQR, GMC, H∞ control, and µ-synthesis. While PID controllers 
maintained stability, they exhibited slow responses, with settling times 
exceeding 1000 min in some configurations. LQG with integral action 
reduced settling times to 510 min for feed disturbances, whereas 
µ-synthesis proved the most robust, stabilizing product purities within 
569 min while maintaining steady-state errors <0.002 in product 
composition. These results demonstrate that advanced multivariable 
controllers provide superior stability and efficiency, achieving up to 40 

% energy savings and 30 % capital cost reductions, making them 
essential for sustainable process intensification.

Kiss and Rewagad [124] optimized energy-efficient control for 
benzene-toluene-xylene (BTX) separation in a DWC, evaluating 
PID-based multi-loop strategies. The DB/LSV control structure exhibited 
the best performance, with settling times under 7 h, compared to 14+ h 
for LV/DSB. By introducing liquid split ratio (rL) optimization, they 
minimized energy requirements while maintaining 97 % product purity, 
achieving 40 % energy savings and 30 % lower capital costs. RGA 
analysis confirmed that DB/LSV had minimal process interactions, 
ensuring robust performance under ±10 % disturbances. This study 
underscores that tailored control strategies are critical for maximizing 
efficiency and stability in DWCs, reinforcing their role in process 
intensification.

Kiss and Bildea [125] examined control challenges in DWCs, 
demonstrating that MPC outperforms multi-loop PID controllers for 
ternary separations such as benzene-toluene-xylene and 
pentane-hexane-heptane. MPC achieved shorter settling times and 
enhanced disturbance rejection, maintaining 97 % product purities 
while reducing energy consumption. In the benzene-toluene-xylene 
case, MPC minimized overshooting and handled 10 % feed composi
tion variations more effectively than PID-based approaches. These 
findings emphasize the importance of advanced control strategies in 
overcoming the operational complexities of DWCs, ensuring sustain
ability and process efficiency in industrial process intensification.

Rewagad and Kiss [126] advanced dynamic optimization and control 
strategies for DWCs, emphasizing the superiority of MPC over conven
tional PID-based frameworks. Using benzene-toluene-xylene (BTX) 
separation, they demonstrated that MPC effectively handled feed flow 
(+10 %) and composition disturbances, maintaining 97 % product pu
rities while optimizing energy use through liquid split manipulation. 
The IAE was consistently lower for MPC, highlighting faster disturbance 
rejection and stability. Additionally, hybrid MPC-PID control enhanced 
robustness and practical implementation, reinforcing MPC’s potential 
for non-linear, high-degree-of-freedom systems like DWCs.

Tututi-Avila et al. [127] evaluated the dynamic controllability of an 
EDWC for ethanol dehydration, demonstrating a 13 % reduction in 
heating duties, 19 % lower cooling requirements, and 12.4 % TAC 
savings compared to conventional ED. Comparing fixed vs. adjustable 
vapor split control structures, they found that an adjustable vapor split 
significantly improved disturbance rejection and ethanol purity (≥99.5 
wt. %). Dynamic simulations confirmed that adjustable vapor splits 
enhanced system stability and response times, validating EDWC as a 
viable intensified alternative for large-scale industrial applications.

Blevins et al. [128] implemented MPC in a pilot-scale DWC, 
demonstrating superior process control over PID controllers. MPC 
optimized temperature control, reducing variability to 0.5◦F, and 
improved side-product purity from 0.8 to 0.9 mol fraction. Wire
lessHART transmitters and PIDPlus algorithms stabilized wireless con
trol updates every 8 s, ensuring robust operation even under a 10 % feed 
reduction. These findings highlight MPC’s transformative role in 
energy-efficient, high-performance DWC operations, setting a bench
mark for process intensification.

Acosta-Solorzano et al. [129] analyzed bio-jet fuel and green diesel 
distillation sequences, comparing conventional (CDS, CIS) and ther
mally coupled (TCDS, TCIS, DWC) configurations. While TCDS achieved 
the lowest energy use (~11 % savings), TCIS and DWC exhibited su
perior controllability, as indicated by lower IAE values. The TCIS 
structure balanced energy efficiency and dynamic stability, out
performing high-energy conventional designs. Control strategies such as 
PI tuning and relative gain array analysis were critical in ensuring 
operational stability while maximizing energy efficiency in biofuel 
separations.

Donahue et al. [130] provided an in-depth DWC control analysis, 
highlighting MPC as the most effective strategy over multi-loop PID and 
temperature-based control. Case studies from BASF (100+ DWCs) and 
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ExxonMobil showcased 30–50 % energy savings, but control challenges, 
particularly with liquid and vapor splits, could double energy con
sumption if misconfigured. Pilot-scale studies confirmed that MPC 
minimized offset and improved response times under feed composition 
variations, emphasizing the need for an integrated control framework to 
optimize DWC performance for industrial applications.

Qian et al. [131] analyzed stabilizing control structures for a 
three-product DWC, evaluating fixed liquid split (CS1), active liquid 
split (CS2), and active vapor split (CS3) strategies under ±20 % dis
turbances in feed composition and flow rate. While CS1 demonstrated 
robustness in handling feed disturbances, CS2 and CS3 exhibited better 
disturbance rejection, particularly in stabilizing prefractionator tem
peratures. CS3 struggled with light component disturbances, whereas 
CS2 effectively managed variations through liquid split manipulation. 
The optimized DWC achieved 99 % purity in ethanol (distillate), 
n-propanol (side product), and n-butanol (bottom product), operating at 
1 kmol/h feed flow and 30.86 kW reboiler duty. The study highlights 
that a DWC can be controlled using only three temperature controllers, 
eliminating the need for direct composition control, and offering a 
simpler and more cost-effective industrial implementation.

Tututi-Avila et al. [132] evaluated advanced control strategies for 
DWCs in BTX separation, comparing satellite, Kaibel, and conventional 
distillation sequences. Their study demonstrated that the satellite col
umn achieved a 24.5 % energy reduction over the conventional 
sequence and an 11.8 % improvement over the Kaibel column, while 
maintaining stable dynamic responses. Composition controllers and 
liquid split manipulation were implemented, proving superior distur
bance rejection for feed composition variations, with product purities 
recovering within six hours. The satellite column exhibited resilience to 
vapor split variations, stabilizing in five hours versus ten hours for the 
Kaibel column. These results validate DWCs as an energy-efficient and 
controllable alternative for petrochemical separations.

Sánchez-Ramírez et al. [133] performed a comprehensive control 
analysis of ten hybrid distillation designs for biobutanol separation, 
comparing conventional, thermally coupled, and intensified configura
tions. Using SVD and P-I controllers, they found that intensified designs 
exhibited superior control properties, with Design E achieving the best 
minimum singular value and lowest IAE for acetone control, while 
Design D excelled in butanol control. Intensified designs showed higher 
thermal coupling flow rates (118.62 kg/h liquid, 104.58 kg/h vapor in 
Design E), correlating with improved dynamic behavior and energy ef
ficiency. These findings highlight the critical role of process intensifi
cation in achieving both lower energy consumption and enhanced 
control performance in biobutanol production.

Rodríguez et al. [134] explored control strategies for extractive and 
reactive DWCs, demonstrating that MPC outperformed decentralized 
control by reducing oscillations and effectively handling feed variations 
up to 5 %. Case studies included an extractive DWC for bioethanol 
dehydration and a reactive DWC for methyl acetate hydrolysis, where 
MPC stabilized ethanol and water compositions despite 2.5 % feed dis
turbances. The reactive DWC achieved stable methanol and acetic acid 
production with constrained dynamic adjustments (prediction horizon: 
40 min, control horizon: 4 steps). These results confirm that MPC 
significantly enhances operational stability and efficiency in intensified 
separation processes.

Weinfeld et al. [135] provided a comprehensive review of RDWC 
advancements, emphasizing their potential for 25–40 % energy savings 
and 30 % lower capital costs. While major players like BASF operate 
over 70 DWCs, industrial adoption remains challenging due to complex 
control requirements and vapor-liquid equilibrium uncertainties. MPC 
and P-I control strategies have shown promising stability despite feed 
disturbances, and experimental validation confirms RDWC feasibility, 
with methyl acetate hydrolysis achieving 82.2 % conversion and ethyl 
acetate/methyl oleate separation reaching 92.1 wt % methanol purity. 
The study underscores RDWCs’ transformative potential, bridging 
experimental progress and computational optimization toward 

large-scale commercial viability.
Keil [136] provides a review of process intensification control, 

emphasizing innovations that enhance efficiency and sustainability. 
Heat-integrated distillation columns (HIDiC) reduce energy consump
tion by up to 50 %, while DWCs achieve 30 % energy savings by 
consolidating multi-step separations into a single unit. Microreactors 
improve heat and mass transfer rates, reducing reaction times by 90 %, 
and static mixers optimize continuous flow processes, lowering energy 
use by 40 %. The integration of multi-objective optimization frame
works in modular designs further enhances operational efficiency by 
balancing economic performance with environmental sustainability. 
This study underscores the critical role of intensified process control in 
optimizing chemical operations, reducing energy demand, and 
improving dynamic stability.

Wang et al. [137] developed an advanced sliding mode control 
(SMC) strategy for DWCs, optimizing process performance through 
response surface methodology (RSM) and particle swarm optimization 
(PSO). The study achieved 6.15 % energy savings compared to con
ventional single-factor optimization and demonstrated SMC’s superior
ity over PID controllers, reducing settling time from 3.3 to 1.1 s for C5 
composition tracking, with 12 times better performance under certain 
conditions. The SMC effectively managed nonlinear interactions and 
time delays, ensuring stable operation under feed disturbances and 
composition variations, positioning it as a robust control solution for 
highly integrated separation processes.

Lukač et al. [138] investigated the controllability of a four-product 
DWC with a 2–3–3 configuration, demonstrating its steady-state effi
ciency but highlighting dynamic challenges due to strong control loop 
interactions. Temperature-driven PID control struggled to maintain 
product specifications under feed disturbances, with IAE values reaching 
13.2 and settling times ranging from 83 to 210 min. The study suggests 
that active vapor-split manipulation or advanced control schemes are 
necessary to improve dynamic stability and enable sustainable industrial 
adoption of this intensified design.

Zhang et al. [139] introduced advanced control strategies for 
liquid-only transfer Kaibel DWCs (LTS-KDWC) in a four-component 
alcohol separation process, comparing composition control (CS1), tem
perature control (CS2), and temperature difference control (CS3) under 
±15 % feed disturbances. CS3 outperformed other methods, maintain
ing 99 mol % purity across all streams while minimizing steady-state 
errors, demonstrating superior robustness and adaptability for 
industrial-scale implementation. These results underscore the impor
tance of tailored control strategies in achieving high efficiency and 
operational stability in intensified separation processes.

Zhang et al. [140] proposed an LSTM-based MPC framework for an 
EDWC, addressing its nonlinear dynamics, multi-input multi-output 
nature, and time delays. The LSTM-MPC model was trained on extensive 
time-series data, ensuring high prediction accuracy with minimal mean 
squared error (MSE). Using multi-objective particle swarm optimization 
(MOPSO), the study determined optimal steady-state conditions, and 
three temperature inferential control (TIC) schemes were evaluated to 
identify the best input features for LSTM-MPC. Dynamic simulations 
tested the controller’s performance under industrial disturbances, 
demonstrating superior closed-loop controllability, reduced offsets, 
negligible oscillations, and shorter transition times compared to con
ventional TIC strategies. These results highlight LSTM-MPC’s potential 
for enhancing the stability and operational efficiency of EDWC, offering 
a more robust alternative for managing complex intensified separation 
processes.

Wang et al. [141] investigated the dynamic control of a liquid-only 
transfer extractive dividing-wall column (LTS-EDWC), optimizing its 
design and control performance for isopropanol-water-dimethyl sulf
oxide separation. The study first applies a multi-objective genetic al
gorithm to minimize total stage number and reboiler duty, followed by 
the development of three control structures. The basic control structure 
(CS1) stabilizes the system under ±10 % disturbances but fails to reach 
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steady-state within 10 h. An improved control structure (CS2) achieves 
faster recovery under ±20 % disturbances, maintaining product purity 
more effectively. To further enhance control performance, an adaptive 
neuro-fuzzy inference system (ANFIS)-PID controller (CS3) is intro
duced, reducing the time to steady-state by 8.6 % compared to CS2. 
However, CS2 proves to be more universally applicable across different 
extractive distillation systems, such as n-heptane-toluene-aniline and 
acetone-methanol-water, where it successfully restores product purity 
within 10 h under ±20 % feed disturbances. These findings emphasize 
the potential of LTS-EDWC with optimized control strategies for 
achieving stable and efficient operation in intensified separation 
processes.

4.2.4. Hybrid and membrane-based process control
This section examines recent works on the control of hybrid and 

membrane-based separation processes, addressing challenges related to 
process dynamics, mass transfer limitations, and system nonlinearity. 
The reviewed articles explore control strategies aimed at enhancing 
performance, stability, and energy efficiency in these integrated sepa
ration systems.

Iglesias et al. [142] presented a critical review of the integration of 
membrane technologies and photocatalysis for process intensification, 
focusing on advanced control strategies in photocatalytic membrane 
reactors (PMRs) and photocatalysis-membrane filtration (PMF) systems. 
These technologies enable simultaneous reaction and separation, 
enhancing energy efficiency and operational reliability in applications 
such as wastewater treatment and hydrogen production. Control in
novations include UV irradiation optimization, tailored membrane 
coatings, and reactor geometry refinements to synergize reaction ki
netics with membrane separation. Quantitative results demonstrate over 
80 % total organic carbon (TOC) removal efficiency in wastewater ap
plications, while PMRs for hydrogen production achieve H₂ generation 
rates of up to 1000 µmol/g⋅h using Z-scheme configurations with Nafion 
membranes, surpassing conventional photocatalytic systems. These ad
vancements address catalyst recovery, fouling, and mass transfer limi
tations, positioning PMRs as a key technology for process intensification, 
with ongoing challenges in scalability and long-term stability.

Jiang et al. [143] examined process control advancements in mem
brane crystallization (MCr), emphasizing precision in nucleation and 
growth regulation through novel membrane designs. The study high
lights dynamic process control integration, optimizing interfacial mass 
transfer rates (0.66 mg/cm²/s) to achieve narrow crystal size distribu
tion (CSD) and uniform morphology. Energy efficiency improvements of 
20 %− 30 % compared to conventional crystallization methods are 
demonstrated, with high packing density membranes (238 m²/m³) 
enhancing production efficiency and supersaturation control at nano
meter precision. Case studies include pharmaceutical crystallization, 
where hollow fiber membranes regulate supersaturation, and hypersa
line water treatment, achieving up to 84 % freshwater recovery and 2.72 
kg/m²/day salt production. These findings underscore MCr’s potential 
for sustainable crystallization, integrating advanced process control for 
optimized energy and material efficiency.

4.2.5. Catalytic reactive systems
This section reviews key contributions in the control of catalytic 

reactive systems, focusing on strategies to optimize reaction perfor
mance, improve selectivity, and manage thermal effects. The discussion 
includes advanced control methodologies that address the complexities 
of reaction kinetics and multiphase interactions in catalytic processes.

Dautzenberg and Mukherjee [144] explored multifunctional reactors 
as an advanced PI strategy, integrating reaction and transport phe
nomena to enhance efficiency and sustainability. The study categorizes 
PI into four types: enhanced catalyst functionality (Type A), inter-phase 
transport intensification (Type B), intra-reactor process integration 
(Type C), and solid recirculation systems (Type D), demonstrating their 
role in improving heat and mass transfer, reducing energy consumption, 

and minimizing by-products. Control strategies for these intensified 
systems remain a critical challenge, particularly in fluid catalytic 
cracking (FCC), where catalyst regeneration must be dynamically 
adjusted to prevent thermal instability, and catalytic distillation, where 
reaction and separation processes occur simultaneously. Quantitatively, 
FCC achieves over 75 % energy recovery, while catalytic distillation 
improves selectivity by 20–30 %. Recent innovations include micro
reactors, which leverage high heat transfer coefficients to enable 
ultra-fast reaction kinetics, and micro-engineered catalyst (MEC) sys
tems, which optimize mass transfer while minimizing pressure drops. 
These findings underscore the necessity of adaptive control strategies to 
manage nonlinear dynamics and process interactions, ensuring opera
tional stability and enhanced efficiency in PI applications.

De Toledo et al. [145] investigated process intensification control in 
bulk polymerization using an autorefrigerated continuous stirred-tank 
reactor (CSTR) with a semi-flooded horizontal condenser. The study 
addresses the challenge of non-condensable gas accumulation, which 
disrupts condenser pressure, reactor temperature, and heat exchange 
efficiency, leading to process instability. To counteract these issues, the 
authors propose an advanced control strategy incorporating periodic gas 
purging and compare P-I, QGPC-SQP, and adaptive STQGPC controllers. 
Quantitative results reveal that P-I control fails to stabilize the system, 
with oscillations exceeding ±5 K, while QGPC and STQGPC reduce de
viations to within ±0.5 K, maintaining stable operation. Under a − 10 % 
step perturbation in feed temperature, P-I control fails to restore sta
bility, whereas predictive controllers recover steady-state conditions 
within 5000 s. These results highlight the necessity of advanced pre
dictive control methodologies to optimize efficiency, ensure reliability, 
and enhance process safety in intensified polymerization systems.

Appel and Wachsen [146] developed an MPC framework for het
erogeneously catalyzed gas-phase reactions, integrating a detailed ki
netic model with statistical correlations from six years of industrial data. 
Their hybrid modeling approach, combining deterministic and statisti
cal elements, optimizes reactor selectivity and stability, leading to 2 % 
selectivity improvements at the reactor exit under all operational con
ditions. The system incorporates real-time process optimization, auto
mated data handling, and parallel simulations for scenario prediction, 
reducing material and energy costs while enhancing plant efficiency. 
Compared to traditional controllers, MPC enables more precise dosing 
adjustments and proactive decision-making, significantly improving 
reactor stability and operational robustness. These findings confirm that 
hybrid kinetic-statistical models, when integrated into MPC frame
works, provide scalable solutions for process intensification, particularly 
in selectivity optimization and long-term reactor stability.

Becht et al. [147] investigated microstructured catalytic wall re
actors (MSRs) as a transformative process intensification strategy for 
highly exothermic gas-phase reactions, focusing on phthalic anhydride 
(PA) production from o-xylene. The study introduces a "booster concept, 
" where MSRs handle 63 % of the total heat release within 20 % of the 
reactor volume, improving heat and mass transfer and process safety. 
Economic analysis indicates a potential 12 % reduction in production 
costs, with overall efficiencies 180 % higher than conventional reactors. 
Despite challenges in operational reliability and scale-up, the study es
tablishes MSRs as a pioneering intensification strategy, offering signif
icant energy savings, enhanced reaction control, and improved 
selectivity in chemical manufacturing.

Bahroun et al. [148] developed an advanced hierarchical control 
structure for high-pressure catalytic slurry reactors, specifically 
RAPTOR® for o-cresol hydrogenation. The system operates at 300 ◦C 
and 250 bar, requiring a Lyapunov-based controller with thermody
namic stability constraints to optimize conversions (98 %) while 
rejecting disturbances such as ±30 % inlet gas flow variations. The 
control strategy stabilizes outlet temperatures and ensures operational 
safety, demonstrating robust disturbance rejection and energy effi
ciency. These results emphasize the importance of 
thermodynamic-based control in maintaining process stability and 
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optimizing efficiency in highly intensified reactors.
Ghiasy et al. [149] addressed pH control challenges in spinning disc 

reactors (SDRs), employing nonlinear compensation techniques such as 
pH characterizers and disturbance observers (DOs). While P-I control 
achieves an IAE of 10, it exhibits unacceptable overshoots (~40 %). 
Nonlinear compensation strategies eliminate limit cycles but at the cost 
of slower response times, whereas DOs enhance disturbance rejection. A 
case study on hydrochloric acid neutralization with sodium hydroxide 
highlights the fast dynamics of SDRs, where reduced size and enhanced 
mixing necessitate precise control strategies. These findings underscore 
the trade-off between responsiveness and stability in intensified chem
ical systems.

Li and Li [150] investigated neural network-based nonlinear MPC 
(NMPC) for three-phase catalytic slurry hydrogenation reactors, which 
operate under extreme conditions (300 ◦C, 250 bar). Two NMPC ap
proaches are compared: SQP-based NMPC (NMPC-NO) and local line
arization NMPC (NMPC-NPL). Results show that NMPC-NO achieves 
superior tracking accuracy (IAE = 9.14, ISE = 3.22) but higher 
computational costs, whereas NMPC-NPL reduces computation time by 
over 50 % while maintaining similar accuracy. Compared to linear MPC, 
NMPC exhibits better robustness under nonlinearities, highlighting its 
potential in optimizing control for highly intensified reactors.

Li and Li [151] extended their work by developing an MPC strategy 
for intensified continuous reactors, integrating a neural network-based 
Wiener model. Their hybrid approach simplifies NMPC into a compu
tationally efficient linear MPC (LMPC), applied to hydrogenation of 
o-cresol at 200 bar and 300 ◦C. NMPC outperforms LMPC in setpoint 
tracking (IAE = 5.84 vs. 6.63) under heat transfer variations, while 
LMPC slightly outperforms NMPC under mass transfer variations. These 
findings highlight the potential of NMPC in controlling intensified re
actors, though online adaptation of neural network parameters is sug
gested to further improve robustness.

Kähm and Vassiliadis [152] introduced a stability criterion (K) for 
exothermic batch processes, embedding it into nonlinear MPC to prevent 
thermal runaways. By incorporating divergence-based stability con
straints, their control scheme reduces reaction times by at least 50 % 
while ensuring stable operations at temperatures up to 450 K. Case 
studies show that stability-integrated MPC achieves optimized yields 
with reduced computational costs, cutting iteration times by up to 50 %. 
The approach is validated across multi-component reaction systems, 
where it predicts stability transitions with a 5 K margin before instability 
onset, enabling safe and efficient process intensification.

Jia et al. [153] explored process intensification control in cooling 
crystallization, integrating ultrasound, supersaturation control (SSC), 
and temperature cycling (TC) to optimize crystal morphology. Their 
combined approach achieves a 63.63 % increase in bulk density, L/D 
ratio reduction from 14 to 7, and uniform particle size distribution. 
Ultrasound enhances nucleation, SSC maintains steady growth, and TC 
eliminates fine crystals, collectively improving efficiency and sustain
ability in industrial crystallization. These findings highlight the critical 
role of process control in achieving intensified crystallization processes.

4.2.6. Advanced control and optimization in process intensification
This section summarizes recent advances in control and optimization 

strategies for process intensification, with a focus on model predictive 
control, data-driven approaches, and real-time optimization techniques. 
The reviewed studies highlight methods to enhance operational effi
ciency, system responsiveness, and energy savings in intensified process 
systems.

Wang et al. [154] highlighted the quantitative benefits of PI in solid 
handling systems, including energy efficiency improvements of up to 
30–40 %, process throughput enhancements of up to twofold, and 
operational cost reductions of approximately 20 %. These gains are 
achieved through enhanced mass and heat transfer rates, reduced pro
cess footprints, and shorter process times. The review emphasizes the 
critical role of advanced control strategies, such as MPC, in managing 

the fast dynamics, sensitivity, and increased complexity of PI systems, 
with control performance metrics showing up to 50 % faster response 
times and improved process stability under dynamic conditions. These 
findings underscore the economic and operational advantages of PI 
when integrated with adaptive and real-time monitoring control 
systems.

Tian et al. [155] emphasized the quantitative integration of control 
systems within the design framework for process intensification. Uti
lizing multi-parametric model predictive control (mp-MPC), the study 
achieves optimal control strategies through dynamic optimization. Key 
outcomes include a closed-loop validation that maintains MTBE purity 
at 98 % under operational disturbances and uncertainties. Additionally, 
dynamic performance metrics such as Risk Ratios—0.91 for Operable 
Design 1 and 0.81 for Operable Design 2—highlight the role of control in 
reducing process risks. This approach ensures robust, economically 
optimized operations while enhancing flexibility and safety within 
intensified systems. The framework demonstrates the critical role of 
quantitative control analysis in achieving verifiable and operable de
signs in modern chemical engineering processes.

Lopez-Guajardo et al. [156] highlighted that recent advancements in 
Process Intensification 4.0 emphasize the integration of ML to enhance 
process control strategies, particularly through predictive and adaptive 
control systems. ML models, such as neural networks and hybrid 
physical-data approaches, enable real-time optimization of dynamic, 
non-linear processes, improving energy efficiency by up to 30 % and 
operational efficiency to exceed 95 %. The use of advanced sensors for 
real-time data collection further supports multi-parameter predictive 
control frameworks, facilitating robust performance under variable 
conditions. These innovations contribute to sustainable and circular 
processes by reducing waste and enhancing material recycling efficiency 
by 40 %, demonstrating the transformative potential of data-driven 
control in achieving resource-efficient operations.

Mokrova et al. [157] developed an approach for the intensification of 
automated control systems applied to industrial and transportation 
processes, achieving measurable improvements in efficiency and sus
tainability. In the production of activated carbon, they designed a con
trol system for the drying and carbonization stages that utilizes recycled 
carbonization gases as a drying agent, resulting in a 25 % reduction in 
energy and operational costs. Additionally, they implemented an acti
vation module with parallel-arranged furnaces and a centralized control 
system, optimizing performance and extending equipment lifespan by 
20 %. In transportation systems, they applied predictive and dynamic 
models, including Mamdani systems, to manage urban traffic and reduce 
energy consumption in tunnel lighting by an average of 30 %. These 
advancements, based on hierarchical and decomposition principles, in
tegrated hierarchical optimization methods and dynamic analysis to 
maximize operational and energy efficiency, demonstrating the appli
cability of their methodology across various industrial sectors with 
concrete results in energy savings and product quality enhancement.

These advancements are further supported by recent interdisci
plinary developments that underscore the growing impact of AI and 
data-driven control across a wide range of complex industrial systems. 
For instance, the AI Institute in Dynamic Systems has proposed a com
mon task framework for developing interpretable and physics- 
constrained models through optimal sensor placement and the integra
tion of data acquisition, modeling, and control. Wang et al. [158] 
introduced a differential geometry–reinforced learning framework 
(DGRL) that combines mechanistic and data-driven models, demon
strating superior control performance in highly nonlinear environments 
such as active suspension systems. Similarly, Mattera et al. [159] 
developed a reinforcement learning approach tailored to industrial 
manufacturing, including sim-to-real deployment in wire arc additive 
processes. Noriega and Pourrahimian [160] highlighted how AI and data 
analytics are transforming strategic mine planning through techniques 
like genetic algorithms and discrete simulations. Vake et al. [161] 
emphasized the role of open-source large language models in building 
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trustworthy and transparent AI systems with industrial applicability. 
Ghahramani et al. [162] proposed a smart manufacturing framework 
that leverages neural networks and evolutionary computing for intelli
gent automation in semiconductor production. In addition, Kutz et al. 
[163] contributed to the theoretical foundation of physics-informed 
machine learning by focusing on sparse regression, nonlinear dy
namics identification, and interpretable model discovery. Although 
these studies are not limited to process intensification, they represent 
critical advances in AI-enabled control and offer transferable method
ologies that can be adapted to the design and operation of intensified 
process systems.

To further ground these advancements, it is essential to move beyond 
performance metrics and examine the mechanistic foundations of con
trol behavior in intensified systems. In particular, the nonlinear coupling 
between transport and reaction phenomena in RD and DWC units in
troduces stiff differential-algebraic equations (DAEs) that challenge 
traditional linear control assumptions. This has prompted the adoption 
of differential flatness and model order reduction (MOR) methods to 
derive tractable control-oriented models capable of preserving key 
physical dynamics while reducing computational burden [164].

In hybrid control architectures, mechanistic modeling plays a pivotal 
role when integrating soft sensors or AI modules. For example, observer- 
based estimation schemes grounded in reaction kinetics and mass 
transfer models can provide real-time inferential data to machine 
learning components, enhancing accuracy and stability. These hybrid 
estimators enable real-time reconciliation between empirical data and 
physical constraints, ensuring that AI models operate within feasible 
process envelopes and preserving thermodynamic consistency.

Furthermore, recent developments in Lyapunov-based stability 
analysis and passivity theory have been applied to validate control laws 
for intensified processes under uncertainty [165]. In NMPC frameworks, 
control Lyapunov functions are now routinely used to certify closed-loop 
stability, even in the presence of large input delays or non-minimum 
phase behaviors. These theoretical guarantees are particularly critical 
for self-optimizing control systems operating near safety-critical 
boundaries, such as in reactive crystallization or pressure-swing 
systems.

4.3. Statistical analysis of control advancements (2000–2025)

A statistical evaluation was conducted to identify trends in process 
intensification control, revealing significant shifts in control strategies 
over the past 25 years. Fig. 1 illustrates the evolution of these tech
niques, highlighting the decline of traditional methods and the 

increasing adoption of advanced control approaches.
One of the most notable trends is the decline in the usage of PID 

control. In the year 2000, PID controllers were employed in approxi
mately 80 % of process intensification applications. However, their 
prevalence has significantly decreased over time, dropping to below 25 
% by 2025. This decline can be attributed to the limitations of PID 
controllers in handling complex, nonlinear, and highly dynamic sys
tems, which are characteristic of intensified processes. As a result, more 
advanced strategies, such as MPC and AI-based techniques, have gained 
prominence.

The adoption of MPC and NMPC has shown a steady rise, increasing 
from just 20 % in 2000 to approximately 45 % in 2025. These techniques 
have been particularly beneficial in applications such as RD, ED, and 
DWCs, where dynamic optimization and predictive capabilities provide 
substantial performance improvements. The ability of MPC and NMPC 
to handle multivariable interactions and constraints makes them 
particularly well-suited for complex intensified processes.

AI-based control strategies, including ANN and soft sensors, have 
emerged as a viable alternative in recent years. These techniques began 
gaining traction around 2015 and have since grown to account for 
approximately 20 % of the control strategies employed in 2025. AI- 
based control methods offer enhanced real-time adaptability, robust
ness against uncertainties, and improved predictive capabilities, which 
are essential for modern process intensification applications. By 
leveraging machine learning algorithms, these methods can optimize 
control actions dynamically, ensuring more stable and efficient process 
operations.

Another key trend is the rise of hybrid control strategies, which 
integrate model-based approaches with AI techniques. The adoption of 
hybrid control has expanded significantly, from just 5 % in 2010 to 25 % 
in 2025. This approach combines the advantages of traditional model- 
driven strategies, such as MPC, with the learning capabilities and 
adaptability of AI-based systems. Hybrid control frameworks enable 
better handling of nonlinearities, disturbances, and uncertainties, 
making them an attractive solution for next-generation process 
intensification.

Overall, these trends indicate a transformative shift in process con
trol methodologies, moving away from conventional PID controllers 
towards more intelligent, adaptive, and predictive approaches. The 
increasing reliance on MPC, NMPC, AI-based control, and hybrid stra
tegies reflects the growing complexity of process intensification and the 
need for more sophisticated control solutions to ensure efficiency, sta
bility, and sustainability in industrial applications.

Fig. 2 provides a multidimensional representation of the evolution of 

Fig. 1. Evolution of control strategies in process intensification: transition from traditional to advanced approaches.

C. Ramírez-Márquez et al.                                                                                                                                                                                                                    Chemical Engineering and Processing - Process Intensiϧcation 216 (2025) 110388 

15 



control strategies in process intensification between 2000 and 2025. The 
matrix captures the relative intensity and timing of adoption across four 
major control paradigms: PID, MPC/NMPC, AI-based, and hybrid sys
tems. The size of each colored circle is proportional to the relative 
prevalence reported in the literature for each time interval, allowing for 
a visual comparison of both temporal trends and the co-existence of 
multiple strategies. This format offers a complementary perspective to 
statistical plots by explicitly illustrating the overlapping implementation 
of different techniques during transitional periods in the field.

Color coding is used to distinguish the primary control approaches: 
red for PID controllers, blue for MPC and NMPC techniques, green for AI- 
based strategies including neural networks and reinforcement learning, 
and yellow for hybrid control frameworks that combine model-based 
and data-driven methodologies. The diagram emphasizes the dimin
ishing dominance of PID as more advanced methods gained traction, 
particularly in systems with strong nonlinearities and real-time opti
mization requirements. The visual clustering of AI and hybrid methods 
after 2015 reflects the growing accessibility of computational resources 
and the integration of machine learning into industrial automation. 
Together with the quantitative data of Fig. 1, this figure reinforces the 
observed shift toward intelligent, predictive, and sustainable control 
architectures in intensified process systems.

4.4. Impact on efficiency and sustainability

The impact of advanced control strategies on efficiency and sus
tainability in process intensification has been widely studied, revealing 
significant improvements in energy consumption, economic perfor
mance, and operational stability. Across multiple reviewed studies, the 
implementation of intensified process control strategies has led to sub
stantial energy savings, with reductions ranging from 15 % to 40 %. 
These savings are primarily achieved through optimized process dy
namics, enhanced heat integration, and improved system responsive
ness, which collectively contribute to lower energy consumption and 
reduced carbon footprints in industrial applications.

From an economic perspective, the adoption of modern control 
techniques has translated into notable reductions in TAC. Depending on 
the control strategy employed and the specific process type, cost re
ductions have been reported in the range of 12 % to 30 %. MPC, NMPC, 
and AI-driven approaches contribute to these savings by optimizing 
resource utilization, minimizing waste, and enhancing process effi
ciency. The ability to dynamically adjust operational parameters in real 
time allows these strategies to maintain optimal performance, thereby 
reducing operating costs and improving overall profitability.

In addition to economic and energy benefits, intensified control 
strategies have significantly improved operational stability. Advanced 
control methods, particularly NMPC and AI-driven controllers, have 

demonstrated superior disturbance rejection capabilities, reducing the 
impact of process variations and external disruptions. These approaches 
have also been shown to decrease stabilization times, enabling processes 
to recover more rapidly from perturbations and maintain steady-state 
operation more effectively. The integration of predictive and adaptive 
control techniques ensures a more robust and resilient process, ulti
mately leading to higher efficiency and sustainability in industrial 
applications.

5. Sustainability and process intensification control

The integration of sustainability into PI requires a fundamental shift 
in how control systems are conceived and implemented. Traditional 
methods that prioritize operational efficiency and product yield must 
evolve to address the broader environmental and social impacts of in
dustrial processes. By embedding sustainability metrics into control 
frameworks, PI can transcend conventional optimization paradigms and 
become a cornerstone of green manufacturing.

A key principle of green engineering is the integration of process 
monitoring and control to enhance efficiency and sustainability in 
chemical manufacturing. As highlighted by Jiménez-González & 
Constable [166], effective control strategies, such as real-time optimi
zation and advanced regulatory control, contribute to minimizing waste, 
reducing energy consumption, and improving resource utilization. By 
ensuring stable operation within optimal conditions, control systems 
prevent deviations that could lead to increased emissions or in
efficiencies. This aligns with the broader objectives of green chemistry 
and engineering, demonstrating that well-designed control strategies are 
not merely operational necessities but fundamental components in the 
transition toward more sustainable industrial practices.

Achieving this transformation starts with real-time monitoring sys
tems capable of assessing the environmental footprint of every opera
tional decision. Advances in digital twins and life cycle assessment (LCA) 
algorithms have enabled process engineers to evaluate metrics like 
greenhouse gas emissions, water usage, and material efficiency 
dynamically. For instance, incorporating LCA feedback loops into MPC 
systems allows for decision-making that minimizes environmental im
pacts without compromising performance.

A key enabler of sustainable PI is the use of adaptive control stra
tegies to accommodate renewable energy sources. The variability 
inherent in solar and wind energy often disrupts the stability of tradi
tional processes. However, AI-driven controllers equipped with rein
forcement learning capabilities can adapt process conditions in real 
time, ensuring seamless integration of renewable energy inputs. Such 
systems have been shown to enhance the efficiency of energy-intensive 
operations, including separations and catalytic reactions, by dynami
cally optimizing energy use based on availability.

Decentralized control architectures represent another leap forward 
for sustainability in PI. These systems distribute computational and 
decision-making power across modular units, reducing vulnerabilities 
associated with centralized systems. Decentralization also facilitates 
localized optimization, where individual modules adjust their opera
tions to achieve global sustainability goals. Recent advancements in self- 
healing control systems, leveraging distributed ledger technologies and 
AI, further enhance resilience by enabling processes to detect and 
recover from faults autonomously.

The future of PI control may also hinge on the application of quan
tum computing. With its unparalleled computational power, quantum 
algorithms offer the potential to solve complex optimization problems 
that are currently beyond the reach of classical computing. This capa
bility is particularly relevant for PI systems, where the interplay of 
multiple variables in nonlinear processes demands high-speed, high- 
accuracy solutions. Quantum-enabled control could revolutionize areas 
such as energy recovery, waste minimization, and material efficiency.

To fully realize the potential of sustainability in PI, interdisciplinary 
collaboration is essential. Material scientists, data engineers, and 

Fig. 2. Visual mapping of technological shifts in control strategies for process 
intensification (2000–2025).
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process designers must work together to create systems that are not only 
efficient but also aligned with global sustainability goals. By integrating 
circular economy principles, leveraging AI and quantum computing, and 
embracing decentralized architectures, PI can pave the way for a future 
where industrial processes are both economically and environmentally 
sustainable.

An emerging direction in sustainable PI control involves integrating 
supervisory control layers specifically designed to monitor environ
mental performance metrics. These higher-level systems operate over 
standard real-time controllers, continuously tracking indicators such as 
resource circularity, carbon intensity, and cumulative energy demand. 
By enabling the system to anticipate and correct deviations from sus
tainability targets, this hierarchical architecture bridges the gap be
tween process optimization and long-term ecological objectives.

6. Future perspectives

The control of intensified processes is undergoing a paradigm shift, 
driven by emerging technologies that not only integrate seamlessly into 
existing systems but also redefine the design, management, and opti
mization of industrial operations. Several innovative areas have 
demonstrated the potential to address current challenges while 
advancing efficiency, adaptability, and sustainability.

Generative AI is reshaping the development of control strategies by 
enabling the creation of operational models capable of predicting system 
behavior and proposing real-time optimal configurations. Combined 
with digital twin technologies, these tools provide precise virtual envi
ronments to simulate and validate control strategies before physical 
deployment. Their application has proven particularly effective in 
complex industrial settings, including advanced chemical production 
and energy-intensive operations.

Meta-learning in process control has emerged as a transformative 
approach. This methodology enables algorithms to adapt swiftly to new 
data and operational scenarios with minimal external intervention. 
When applied to predictive control systems, meta-learning enhances 
automation in highly dynamic and nonlinear processes, such as plasma 
reactors and thermal-gradient-based separation systems, significantly 
improving adaptability and robustness.

The integration of quantum-based sensors represents a major 
advancement in process monitoring accuracy. These sensors offer un
precedented sensitivity, enabling the detection of microfluctuations in 
real time—critical for maintaining stability in intensified processes. This 
innovation is particularly beneficial for systems operating under 
extreme conditions, such as those involved in high-pressure and high- 
temperature synthetic fuel production using green hydrogen.

In terms of sustainability, advancements in multi-objective optimi
zation models facilitate the effective alignment of economic, environ
mental, and operational goals. These models incorporate metrics such as 
carbon footprint, water usage, and energy efficiency, providing inte
grated decision-making tools that meet the increasing demand for sus
tainable industrial practices.

The development of autonomous systems guided by algorithmic 
ethics is gaining momentum in industrial process design. These systems 
consider operational efficiency alongside parameters related to safety 
and social impact. For instance, advanced chemical plants are deploying 
algorithms designed to mitigate risks associated with human exposure 
while ensuring safe and equitable working conditions.

These innovations collectively signify a transformative shift in the 
approach to controlling intensified processes. By addressing present 
challenges and integrating forward-thinking methodologies, the field is 
advancing toward a future defined by enhanced efficiency, resilience, 
and sustainability.

To ensure that these emerging control strategies are broadly adopted 
and rigorously validated, the availability of open-access datasets and 
standardized benchmark problems is becoming increasingly important. 
These resources allow researchers and practitioners to test hybrid and 

AI-driven control systems under comparable conditions, facilitating 
reproducibility and accelerating innovation. For instance, efforts like the 
AI Institute for Dynamic Systems have begun developing structured 
datasets and task frameworks specifically for physically-constrained 
control applications, serving as a foundation for benchmarking across 
sectors.

Such datasets are particularly critical for hybrid control systems, 
where integrating first-principles models with machine learning de
mands systematic evaluation of accuracy, generalizability, and compu
tational performance. Including benchmark scenarios for common 
intensified operations (such as dividing-wall distillation, membrane- 
reactive systems, or heat-integrated reactors) would enable the com
munity to assess the scalability and robustness of proposed solutions in 
realistic settings. In turn, this would support the industrial deployment 
of adaptive and autonomous control schemes with greater confidence.

7. Conclusion

The evolution of control strategies in process intensification reflects a 
broader transformation in industrial process engineering, where 
adaptability, predictive capabilities, and sustainability have become key 
priorities. Traditional control methods, such as PID controllers, once 
dominant, are increasingly inadequate for managing the complexity of 
modern intensified processes. The growing reliance on advanced tech
niques like MPC, Nonlinear MPC, and AI-driven approaches signifies a 
shift towards more intelligent, self-optimizing control architectures 
capable of handling multi-variable interactions, nonlinear behaviors, 
and real-time decision-making.

One of the most significant impacts of this transition is the enhanced 
integration of control systems with process design. Unlike conventional 
approaches, which often treat control as an afterthought, modern stra
tegies emphasize a co-optimization framework where control perfor
mance is considered during the design phase. This shift leads to 
inherently more stable, efficient, and flexible process configurations, 
reducing the need for costly retrofits and enabling a more seamless 
adaptation to fluctuating operating conditions. Hybrid control systems, 
which blend model-based and AI-driven techniques, exemplify this 
trend by ensuring robust process behavior even under uncertainty, 
demonstrating the growing role of machine learning in industrial 
automation.

Beyond efficiency and cost savings, these advancements have pro
found implications for sustainability. As industries strive to meet stricter 
environmental regulations and carbon reduction targets, optimized 
control strategies play a crucial role in minimizing waste, reducing 
emissions, and improving energy efficiency. The ability to dynamically 
adjust process parameters in response to real-time data not only en
hances performance but also enables more sustainable use of resources. 
This is particularly critical in energy-intensive processes such as RD and 
DWC, where advanced control methods have demonstrated significant 
reductions in energy consumption and environmental impact.

The diversification of control strategies across different intensified 
processes highlights the need for tailored solutions rather than a one- 
size-fits-all approach. Processes such as ED and Hybrid Membrane- 
Reactors benefit from targeted methodologies that align with their 
specific operational challenges. The increasing adoption of AI-based 
control in Catalytic Reactive Systems suggests that future innovations 
will likely focus on autonomous and self-learning systems, capable of 
continuously improving performance without human intervention.

However, several current bottlenecks still limit the broader deploy
ment of advanced control in process intensification. These include 
model uncertainty, sensor limitations, lack of interoperability with 
legacy systems, and computational burdens associated with real-time 
optimization in large-scale nonlinear systems. Furthermore, the gap 
between control design and sustainability metrics remains a critical area 
of concern.

Looking ahead, the integration of digital twins, reinforcement 
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learning, and real-time optimization into process control frameworks 
presents new opportunities for further enhancing efficiency and resil
ience. The challenge will be ensuring that these technologies can be 
implemented in a scalable, cost-effective manner while maintaining 
operational reliability. Additionally, as regulatory frameworks evolve, 
industries will need to balance innovation with compliance, ensuring 
that advanced control methodologies align with safety and environ
mental standards.

In this context, future research should also explore computationally 
efficient architectures capable of scaling with the complexity of large PI 
systems. Distributed and decentralized control strategies offer promising 
pathways to reduce centralized computational burdens while enhancing 
fault tolerance and modularity. Similarly, edge-AI frameworks can 
enable localized, low-latency decision-making, reducing dependence on 
cloud infrastructures and facilitating real-time control in network- 
constrained environments. These approaches hold particular potential 
for modular PI units and geographically distributed chemical production 
schemes.

In light of these limitations, future research should focus on four 
critical areas: (i) developing interpretable and certifiable AI models that 
align with process safety requirements, (ii) embedding lifecycle-based 
sustainability indicators into control objectives, (iii) enabling adaptive 
control in systems powered by intermittent renewable energy sources, 
and (iv) establishing robust co-simulation environments that bridge 
design, control, and economic decision-making in intensified 
operations.

In conclusion, the trajectory of control strategies in process intensi
fication underscores a fundamental shift towards smarter, more sus
tainable industrial operations. The continued convergence of process 
design, control, and AI-driven optimization will be pivotal in shaping 
the next generation of intensified chemical processes, positioning them 
at the forefront of efficiency, adaptability, and environmental 
responsibility.
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[166] C. Jiménez-González, D.J. Constable, Green Chemistry and Engineering: a 
Practical Design Approach, John Wiley & Sons, 2011, pp. 33–66.

C. Ramírez-Márquez et al.                                                                                                                                                                                                                    Chemical Engineering and Processing - Process Intensiϧcation 216 (2025) 110388 

21 

https://doi.org/10.1016/j.cep.2011.01.011
https://doi.org/10.1016/j.ces.2011.09.022
https://doi.org/10.1016/j.ces.2011.09.022
https://doi.org/10.1016/j.cep.2014.05.005
http://refhub.elsevier.com/S0255-2701(25)00237-5/sbref0128
http://refhub.elsevier.com/S0255-2701(25)00237-5/sbref0128
http://refhub.elsevier.com/S0255-2701(25)00237-5/sbref0128
https://doi.org/10.1002/ceat.201600095
https://doi.org/10.1016/j.cep.2016.05.013
https://doi.org/10.1016/j.cep.2016.05.013
https://doi.org/10.1016/j.ifacol.2016.07.271
https://doi.org/10.1016/j.ifacol.2016.07.271
https://doi.org/10.1016/j.cep.2017.01.010
https://doi.org/10.1002/jctb.5020
https://doi.org/10.1002/jctb.5020
https://doi.org/10.1016/j.cep.2016.10.004
https://doi.org/10.1016/j.cep.2017.10.019
https://doi.org/10.1515/revce-2017-0085
https://doi.org/10.1515/revce-2017-0085
https://doi.org/10.1021/acs.iecr.0c03564
http://refhub.elsevier.com/S0255-2701(25)00237-5/sbref0138
http://refhub.elsevier.com/S0255-2701(25)00237-5/sbref0138
http://refhub.elsevier.com/S0255-2701(25)00237-5/sbref0138
https://doi.org/10.1016/j.ces.2023.118589
https://doi.org/10.1016/j.ces.2023.118589
https://doi.org/10.1016/j.seppur.2024.131351
https://doi.org/10.1016/j.seppur.2024.131351
https://doi.org/10.1016/j.seppur.2024.129267
https://doi.org/10.1016/j.cej.2016.01.047
https://doi.org/10.1016/j.cej.2016.01.047
https://doi.org/10.1016/j.eng.2020.06.024
https://doi.org/10.1016/j.eng.2020.06.024
https://doi.org/10.1016/S0009-2509(00)00228-1
https://doi.org/10.1016/S0009-2509(00)00228-1
https://doi.org/10.1016/j.compchemeng.2005.02.017
https://doi.org/10.1016/j.compchemeng.2005.02.017
https://doi.org/10.1016/j.ces.2006.12.079
https://doi.org/10.1016/j.cep.2008.04.012
https://doi.org/10.1016/j.jprocont.2010.03.002
https://doi.org/10.1016/j.jprocont.2010.03.002
https://doi.org/10.1016/j.cep.2012.02.009
https://doi.org/10.1016/j.cep.2015.07.024
https://doi.org/10.1016/j.neucom.2015.12.048
https://doi.org/10.1016/j.neucom.2015.12.048
https://doi.org/10.1016/j.cherd.2018.08.017
https://doi.org/10.1016/j.cherd.2022.01.029
https://doi.org/10.1016/j.cherd.2022.01.029
https://doi.org/10.1016/j.cep.2017.04.007
https://doi.org/10.1016/j.compchemeng.2019.106675
https://doi.org/10.1016/j.compchemeng.2019.106675
https://doi.org/10.1016/j.cep.2021.108671
https://doi.org/10.1016/j.cep.2021.108671
https://doi.org/10.1109/IEEECONF56737.2023.10091978
https://doi.org/10.1016/j.aei.2025.103326
https://doi.org/10.1007/s10845-023-02307-w
https://doi.org/10.1007/s10845-023-02307-w
https://doi.org/10.1016/j.resourpol.2022.102727
http://refhub.elsevier.com/S0255-2701(25)00237-5/sbref0161
http://refhub.elsevier.com/S0255-2701(25)00237-5/sbref0161
https://doi.org/10.1109/JAS.2020.1003114
https://doi.org/10.1109/JAS.2020.1003114
https://doi.org/10.1002/aaai.12159
https://doi.org/10.1109/TSTE.2024.3390394
https://doi.org/10.1109/TSTE.2024.3390394
https://doi.org/10.1016/j.ijepes.2022.108460
http://refhub.elsevier.com/S0255-2701(25)00237-5/sbref0166
http://refhub.elsevier.com/S0255-2701(25)00237-5/sbref0166

	Process intensification control: Advancing efficiency and sustainability, a review
	1 Introduction
	2 Overview of process intensification
	3 Challenges in control of intensified processes
	4 Recent advances in process intensification control
	4.1 Classification of intensified processes and control strategies
	4.2 Key findings and quantitative insights
	4.2.1 Reactive distillation (RD)
	4.2.2 Extractive distillation (ED)
	4.2.3 Dividing wall column (DWC)
	4.2.4 Hybrid and membrane-based process control
	4.2.5 Catalytic reactive systems
	4.2.6 Advanced control and optimization in process intensification

	4.3 Statistical analysis of control advancements (2000–2025)
	4.4 Impact on efficiency and sustainability

	5 Sustainability and process intensification control
	6 Future perspectives
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


